The hot ductility of a Fe-0.3C-9Mn-2Al medium Mn steel was investigated using a Gleeble3800 thermo-mechanical simulator.Hot tensile tests were conducted at different temperatures(600-1300℃)under a constant strain rat...The hot ductility of a Fe-0.3C-9Mn-2Al medium Mn steel was investigated using a Gleeble3800 thermo-mechanical simulator.Hot tensile tests were conducted at different temperatures(600-1300℃)under a constant strain rate of 4×10^(−3)s^(−1).The fracture behavior and mechanism of hot ductility evolution were discussed.Results showed that the hot ductility decreased as the temperature was decreased from 1000℃.The reduction of area(RA)decreased rapidly in the specimens tested below 700℃,whereas that in the specimen tested at 650℃was lower than 65%.Mixed brittle-ductile fracture feature is reflected by the coexistence of cleavage step,intergranular facet,and dimple at the surface.The fracture belonged to ductile failure in the specimens tested between 720-1000℃.Large and deep dimples could delay crack propagation.The change in average width of the dimples was in positive proportion with the change in RA.The wide austenite-ferrite intercritical temperature range was crucial for the hot ductility of medium Mn steel.The formation of ferrite film on austenite grain boundaries led to strain concentration.Yield point elongation occurred at the austenite-ferrite intercritical temperature range during the hot tensile test.展开更多
The mechanism of the interfacial reaction of Al_2O_3/medium Mn steel containing Nb was studied by means of the observation on the interfacial reaction phenomenon of Al_2O_3/medium Mn steel,and the analyses on the inte...The mechanism of the interfacial reaction of Al_2O_3/medium Mn steel containing Nb was studied by means of the observation on the interfacial reaction phenomenon of Al_2O_3/medium Mn steel,and the analyses on the interracial phases.The results show that when T≥1550℃,the interfacial reac- tion of Al_2O_3/medium Mn steel containing Nb happened.In the medium Mn steel matrix,Nb exists in the form of NbC.NbC are the nucleating base of CO gas bubbles.展开更多
Bainite transformation has yet to be utilized and even thoroughly studied in medium Mn steels.Here,we investigate the isothermal bainite transformation in a 10Mn steel at 450°C experimentally and theoretically,fo...Bainite transformation has yet to be utilized and even thoroughly studied in medium Mn steels.Here,we investigate the isothermal bainite transformation in a 10Mn steel at 450°C experimentally and theoretically,focusing on the effect of dislocations introduced by warm deformation.We show that the bainite transformation in the studied medium Mn steel exhibits extremely sluggish kinetics(on a time scale of days),concurrent with the pearlite formation.The introduced dislocations can significantly accelerate bainite transformation kinetics while also facilitating the pearlite reaction.This is likely the first report on the simultaneous occurrence of these two solid-state reactions in medium Mn steels.With respect to the roles of dislocations in the acceleration of bainite transformation observed in this work,we propose a new‘carbon depletion mechanism’,in which dislocations-stimulated pearlite formation makes a twofold contribution:facilitating the formation of bainitic ferrite sub-units to further enhance the autocatalytic effect and preventing the carbon enrichment in the remaining austenite.On this basis,a physical model is developed to quantitatively understand the bainite transformation kinetics considering the effect of concurrent pearlite formation,revealing good agreements between model descriptions and experiment results.Our findings,herein,offer fundamental insights into the bainite transformation in medium Mn steels and uncover a previously unidentified role played by introduced dislocations in influencing the kinetics of bainite formation,which may guide its future application in manipulating microstructure for the development of advanced high-strength steels.展开更多
In this work,we proposed a novel Cu/θdual nanoparticles strategy to tailor the austenite characteris-tics of a medium Mn steel via a tempering-annealing process to optimize the mechanical properties.We explored the e...In this work,we proposed a novel Cu/θdual nanoparticles strategy to tailor the austenite characteris-tics of a medium Mn steel via a tempering-annealing process to optimize the mechanical properties.We explored the effects of Cu-rich particles and cementite precipitated in the tempering process on the austenite reversion during the subsequent annealing process.Both experiments and numerical simula-tions verified that the austenite inherited from cementite had a finer size and a higher Mn enrichment compared with the austenite originating from the tempered martensite matrix.In addition,quantitative evaluations revealed that the pinning effect exerted by the Cu-rich particles could significantly hinder theα/γinterface migration and the recrystallized grain growth,thereby further refining the final mi-crostructure.With contributions from the effects of dual nanoprecipitates on the austenite reversion,the heterogeneous austenite grains inherited from varying nucleation sites ensured the sustained and gradual deformation-induced martensite and twinning formation.Therefore,the Cu-added steels subjected to a tempering-annealing process achieved synergetic enhancement of the tensile strength from 1055 MPa to 1250 MPa and elongation from 33%to 45%.This strategy may provide new guidance for the development and alloy design of high-performance medium Mn steels.展开更多
A duplex ultrafine microstructure in a medium manganese steel (0.2C-5Mn) was produced by austenite re- verted transformation annealing (ART-annealing). The microstructural evolution during annealing was examined b...A duplex ultrafine microstructure in a medium manganese steel (0.2C-5Mn) was produced by austenite re- verted transformation annealing (ART-annealing). The microstructural evolution during annealing was examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Based on the microstructure examination, it was found that some M3C type carbides appeared in the martensitic matrix at the beginning of the ART-annealing. But with further increasing annealing time, these carbides would be dissolved and finally disappeared. Meanwhile, the austenite lath was developed in the ART-annealing process and the volume fraction of austenite increosed with the increase of the annealing time, which resulted in a duplex microstructure con- sisting of ultrafine-grained ferrite and large fraction of reverted austenite after long time annealing. The mechanical property examinations by uniaxial tensile tests showed that ART-annealing (6 h, 650 ℃) resulted in a superhigh product of strength to elongation up to 42 GPa ·%.展开更多
Ultrafast heating(UFH)at the rates of 10-300℃/s was employed as a new strategy to anneal a coldrolled 7 wt%Mn steel,followed by the immediate cooling.Severely deformed strain-induced martensite and lightly-deformed t...Ultrafast heating(UFH)at the rates of 10-300℃/s was employed as a new strategy to anneal a coldrolled 7 wt%Mn steel,followed by the immediate cooling.Severely deformed strain-induced martensite and lightly-deformed thermal martensite,both had been already enriched with C and Mn before,transformed to fine and coarse austenite grains during the UFH,leading to the bimodal size distribution.Compared with the long intercritical annealing(IA)process,the UFH processes produced larger fraction of RA grains(up to 37%)with a high density of dislocation,leading to the significant increase in yield strength by 270 MPa and the product of strength and elongation up to 55 GPa%due to the enormous work hardening capacity.Such a significant strengthening is first attributed to high density dislocations preserved after UFH and then to the microstructural refinement and the precipitation strengthening;whilst the sustainable work hardening is attributed to the successive TRIP effect during deformation,resulting from the large fraction of RA instantly formed with the bimodal size distribution during UFH.Moreover,the results on the microstructural characterization,thermodynamics calculation on the reverse transformation temperature and the kinetic simulations on the reverse transformation all suggest that the austenitization during UFH is displacive and involves the diffusion and partition of C.Therefore,we propose that it is a bainite-like transformation.展开更多
In this paper, we report the influence of cooling processes on the yielding behavior of a medium Mn steel(MMS) with triplex microstructure, i.e. austenite(γ), ferrite(α) and as-quenched martensite(α’). After the i...In this paper, we report the influence of cooling processes on the yielding behavior of a medium Mn steel(MMS) with triplex microstructure, i.e. austenite(γ), ferrite(α) and as-quenched martensite(α’). After the intercritical annealing(IA) at both 725℃ and 750℃, the steel was subjected to the two cooling processes, i.e. air cooling(AC) and water quenching(WQ). It exhibits the discontinuous yielding after the AC following the IA at 750℃ while the continuous yielding after the WQ. Compared with WQ process,both the dilatometry and the microstructural examinations show that the AC process leads to lower Ms temperature, larger retained austenite(RA) fraction and less martensite, the latter is always companied with geometry necessary dislocations(GNDs) generated near the α/α’ interfaces. Considering the complexity of nanosized tri-phases in this steel, the presence of martensite with key features in the resultant specimens was systematically examined by atom probe tomography(APT) on the samples prepared by the specific target lift-out method. The APT results directly revealed the C/Mn co-segregation at the α’/αinterfaces in the AC samples but not in WQ samples. The numerical simulation results further suggest that the segregation of C and Mn at the α’/α interfaces may be due to different mechanisms. We conclude that the yielding of triplex MMS is determined by both the quantity of GNDs generated near theα/α’ interfaces, which increases with martensite fraction, and the extent of their immobilization resulting from the interfacial segregation of solute atoms when the presence of martensite is sufficient. WQ tends to suppress the discontinuous yielding of MMS since the rapid cooling may promote more martensite formed with the increasing quantity of GNDs and prevent the interfacial segregation of both C and Mn.展开更多
The objective of the present study is to develop heterogeneous microstructure in cold-rolled medium Mn steels(MMSs)annealing strategy.The cold-rolled Fe-4.7Mn-0.15C(wt%)steel is annealed twice at different temperature...The objective of the present study is to develop heterogeneous microstructure in cold-rolled medium Mn steels(MMSs)annealing strategy.The cold-rolled Fe-4.7Mn-0.15C(wt%)steel is annealed twice at different temperatures to produce an ultra-fine heterogeneous microstructure with lath-shaped and granular-shaped retained austenite.Excellent mechanical behavior of significant strength enhancement with negligible ductility loss can be achieved.The high strength-ductility properties are attributed to the active transformation induced plasticity effect over a broad strain range owing to dispersive mechanical stabilities of the heterogeneous austenite.Furthermore,the typical yield point elongation phenomenon which is commonly observed in cold-rolled MMSs can be effectively reduced by this microstructural strategy.展开更多
The carbide precipitation behavior and mechanical properties of advanced high strength steel deformed at different temperatures are investigated by X-ray diffractometer(XRD),scanning electron microscope(SEM),transmiss...The carbide precipitation behavior and mechanical properties of advanced high strength steel deformed at different temperatures are investigated by X-ray diffractometer(XRD),scanning electron microscope(SEM),transmission electron microscope(TEM) equipped with an energy dispersing spectroscopy(EDS),and tensile tests.The medium Mn steel was subjected to controlled deformation up to 70% at 750℃,850℃,950℃,and 1050℃,and then quenched with water to room temperature,followed by intercritical annealing at 630℃ for 10 min.In comparison with the undeformed and quenched specimen,it can be concluded that acicular cementite precipitates during the quenching and cooling process,while granular NbC is the deformation induced precipitate and grows during the following annealing process.As the deformation temperature increases from 750℃ to 1050℃,the product of strength and elongation increases at first and then decreases.The smallest average size of second phase particles(20 nm) and the best mechanical properties(32.5 GPa%) can be obtained at the deformation temperature of 950℃.展开更多
Medium Mn steel was metal inert gas(MIG)welded with NiCrMo-3 and 307 Si filler wires.The effect of filler wires on the microstructure and mechanical properties of joint was investigated,and the carbide precipitates we...Medium Mn steel was metal inert gas(MIG)welded with NiCrMo-3 and 307 Si filler wires.The effect of filler wires on the microstructure and mechanical properties of joint was investigated,and the carbide precipitates were contrastively discussed.The results revealed that the microstructure of weld metal,heat-affected zone and base metal are austenite.Obvious grain coarsening occurred in the heat-affected zone(HAZ),and the maximum grain size grew up to 160μm.In HAZ,C and Cr segregated at grain boundaries,the carbides was identified as Cr7 C3.The dispersive(Nb,Mo)C phase was also found in weld metal with NiCrMo-3 filler wire.All the welded joints failed in HAZ during tensile tests.The tensile strength of welded joint with NiCrMo-3 filler wire was 675 MPa,which is much higher than that with307 Si filler wire.In comparison to base metal,higher microhardness and lower impact toughness were obtained in HAZ for these two welded joints,which was attributed to the precipitation of Cr7 C3 phase and grain coarsening.The impact toughness around the fusion line is the worst for these two welded joints.展开更多
We develop a new ultrastrong medium Mn steel with a density reduced to 7.39 g cm^(-3).It has a novel tri-phase microstructure comprising a hierarchical martensitic matrix(α’),dispersed ultra-fine-retained austenite ...We develop a new ultrastrong medium Mn steel with a density reduced to 7.39 g cm^(-3).It has a novel tri-phase microstructure comprising a hierarchical martensitic matrix(α’),dispersed ultra-fine-retained austenite grains(γ),and both compressed and{200}orientedδ-ferrite lamellas,the latter’s formation is due to the alloying of high Al and Si contents for reducing density.As a result,both ultrahigh ultimate tensile strength of 2.1 GPa and good ductility of 16%are achieved after an extraordinary plastic strain hardening increment of about 1.4 GPa.The in-situ synchrotron-based high-energy(HE)X-ray diffraction(XRD)examinations during the tensile deformation revealed that the initial presence of residual com-pressive stress inδ-ferrite could increase the stress required to initiate the plastic tensile deformation of the specimen,leading to the isolatedδ-ferrite lamellas mostly deformed elastically to coordinate the plastic deformation of the martensitic matrix during yielding.During the plastic deformation,the gradual release of residual compressive stress inδandα’,the dislocation multiplication in all the three phases and the successiveγ-to-α’transformation all contribute to such a prominent work hardening increment.This study facilitates the development of novel strategies for fabricating ultrastrong but light steels.展开更多
Based on uniaxial tensile and plane strain deformation tests, the effects of strain states on the stability of RA (retained austenite) in medium Mn steels, which were subjected to IA (intercritical annealing) and ...Based on uniaxial tensile and plane strain deformation tests, the effects of strain states on the stability of RA (retained austenite) in medium Mn steels, which were subjected to IA (intercritical annealing) and Q&P (quenching and partitioning) processing, were investigated. The volume fractions of RA before and after deformation were measured at different equivalent strains. The transformation behaviors of RA were also investigated. The stability of RA differed across two different transformation stages at the plane strain state: the stability was much lower in the first stage than in the second stage. For the uniaxial ten sion strain state, the stability of RA corresponded only to a single transformation stage. The main reason was that there were two types of transformations from RA in the medium Mn steel for the plane strain state. One type was that the martensite originated in the strain-induced stacking faults (SISF). The other type was the strain-induced directly twin martensite at a certain equivalent strain. However, for the uniax- ial tension state, only the strain-induced twin martensite was observed. Dislocation lines and dislocation tangles were also observed in specimens deformed at different strain states. In addition, complex micro- structures of stacking faults and lath-like phases were observed within a grain at the plane strain state.展开更多
Advanced high-strength steels are key structural materials for the development of next-generation energy-efficient and environmentally friendly vehicles.Medium Mn steel,as one of the latest generation advanced high-st...Advanced high-strength steels are key structural materials for the development of next-generation energy-efficient and environmentally friendly vehicles.Medium Mn steel,as one of the latest generation advanced high-strength steels,has attracted tremendous attentions over the past decade due to its excellent mechanical properties.Here,the state-of-the-art developments of medium Mn steel are systematically reviewed with focus on the following crucial aspects:(a)the alloy design strategies;(b)the thermomechanical processing routes for the optimizations of microstructure and mechanical properties;(c)the fracture mechanisms and toughening strategies;(d)the hydrogen embrittlement mechanisms and improvement strategies.展开更多
Deformation-induced martensite transformation from metastable retained austenite is one of the most efficient strain-hardening mechanisms contributing to the enhancement of strength-ductility synergy in advanced high-...Deformation-induced martensite transformation from metastable retained austenite is one of the most efficient strain-hardening mechanisms contributing to the enhancement of strength-ductility synergy in advanced high-strength steels.However,the hard transformation product(often-martensite)and the H redistribution associated with phase transformation essentially decrease materials’resistance to hydrogen embrittlement.To solve this fundamental conflict,we introduce a new microstructure architecting strategy based on an accurately design of core–shell compositional distribution inside the austenite phase.We employed this approach in a typical medium Mn steel(8 wt.%Mn)with an ultrafine grained austenite-ferrite microstructure.We produced a high Mn content(15–16 wt.%)in the austenite shell region and a low Mn content(~12 wt.%)in the core region,through a thermodynamics-guided two-step austenite reversion treatment.During room-temperature deformation,the austenite core transforms continuously starting from a low strain,providing a high and persistent strain-hardening rate.The transformation of Mn-rich austenite shell,on the other hand,occurs only at the latest regime of the deformation,thus effectively inhibiting the nucleation of H-induced cracks at ferrite/deformation-induced martensite interfaces as well as suppressing their growth and percolation.This step-wise transformation,tailored directly targeted to protect the hydrogen-sensitive microstructure defects(interfaces),results in a significantly enhanced hydrogen embrittlement resistance without sacrificing the mechanical performance in hydrogen-free condition.The design of compositional core–shell structure is expected to be applicable to,at least,other multiphase advanced high-strength steels containing metastable austenite.展开更多
For the purpose of developing a 1 500 MPa grade steel sheet with excellent strength and ductility, a 0.15C-10Mn-1.5Al steel was employed to study austenite stability and microstructural evolution based on a novel doub...For the purpose of developing a 1 500 MPa grade steel sheet with excellent strength and ductility, a 0.15C-10Mn-1.5Al steel was employed to study austenite stability and microstructural evolution based on a novel double annealing processing.After a conventional intercritical annealing process, the sample was heated again to a temperature higher than A_(c3) for a very short time to generate austenite grains with different manganese content;thus, the microstructure of martensite plus austenite can be obtained at room temperature.The experimental results show that with increasing annealing temperature, the tensile strength and yield strength increase.When the annealing temperature was higher than 820 ℃,the microstructure consisted of martensite plus austenite, and the tensile strength almost remained invariant with the annealing temperature.A tensile strength of 1 537 MPa and an elong-ation of 25.1% were achieved for the 820 ℃ condition.The volume fractions of austenite and martensite were identified by X-ray diffraction.It was found that with increasing annealing temperature, the volume fraction of the retained austenite decreased, and the ductility also had a gradual downward trend.The related austenite stability was discussed here as well.展开更多
基金the Fundamental Research Funds for the Central Universities,China(Nos.FRF-TP-18-039A1,FRF-IDRY-19-013)the China Postdoctoral Science Foundation(No.2019M650482).
文摘The hot ductility of a Fe-0.3C-9Mn-2Al medium Mn steel was investigated using a Gleeble3800 thermo-mechanical simulator.Hot tensile tests were conducted at different temperatures(600-1300℃)under a constant strain rate of 4×10^(−3)s^(−1).The fracture behavior and mechanism of hot ductility evolution were discussed.Results showed that the hot ductility decreased as the temperature was decreased from 1000℃.The reduction of area(RA)decreased rapidly in the specimens tested below 700℃,whereas that in the specimen tested at 650℃was lower than 65%.Mixed brittle-ductile fracture feature is reflected by the coexistence of cleavage step,intergranular facet,and dimple at the surface.The fracture belonged to ductile failure in the specimens tested between 720-1000℃.Large and deep dimples could delay crack propagation.The change in average width of the dimples was in positive proportion with the change in RA.The wide austenite-ferrite intercritical temperature range was crucial for the hot ductility of medium Mn steel.The formation of ferrite film on austenite grain boundaries led to strain concentration.Yield point elongation occurred at the austenite-ferrite intercritical temperature range during the hot tensile test.
文摘The mechanism of the interfacial reaction of Al_2O_3/medium Mn steel containing Nb was studied by means of the observation on the interfacial reaction phenomenon of Al_2O_3/medium Mn steel,and the analyses on the interracial phases.The results show that when T≥1550℃,the interfacial reac- tion of Al_2O_3/medium Mn steel containing Nb happened.In the medium Mn steel matrix,Nb exists in the form of NbC.NbC are the nucleating base of CO gas bubbles.
基金support from National Key Research and Development Program of China(No.2019YFA0209900)National Natural Science Foundation of China(No.52130102)+5 种基金Research Grants Council of Hong Kong(No.R7066–18)Guangzhou Municipal Science and Technology Project(No.202007020007)Guangdong Basic and Applied Basic Research Foundation of China(No.2020B1515130007)support from National Natural Science Foundation of China(No.52130110)support from National Natural Science Foundation of China(No.52271116)Hong Kong Scholars Program(No.XJ2019029).
文摘Bainite transformation has yet to be utilized and even thoroughly studied in medium Mn steels.Here,we investigate the isothermal bainite transformation in a 10Mn steel at 450°C experimentally and theoretically,focusing on the effect of dislocations introduced by warm deformation.We show that the bainite transformation in the studied medium Mn steel exhibits extremely sluggish kinetics(on a time scale of days),concurrent with the pearlite formation.The introduced dislocations can significantly accelerate bainite transformation kinetics while also facilitating the pearlite reaction.This is likely the first report on the simultaneous occurrence of these two solid-state reactions in medium Mn steels.With respect to the roles of dislocations in the acceleration of bainite transformation observed in this work,we propose a new‘carbon depletion mechanism’,in which dislocations-stimulated pearlite formation makes a twofold contribution:facilitating the formation of bainitic ferrite sub-units to further enhance the autocatalytic effect and preventing the carbon enrichment in the remaining austenite.On this basis,a physical model is developed to quantitatively understand the bainite transformation kinetics considering the effect of concurrent pearlite formation,revealing good agreements between model descriptions and experiment results.Our findings,herein,offer fundamental insights into the bainite transformation in medium Mn steels and uncover a previously unidentified role played by introduced dislocations in influencing the kinetics of bainite formation,which may guide its future application in manipulating microstructure for the development of advanced high-strength steels.
基金support received from the National Natural Science Foundation of China(Grant No.U1964204).
文摘In this work,we proposed a novel Cu/θdual nanoparticles strategy to tailor the austenite characteris-tics of a medium Mn steel via a tempering-annealing process to optimize the mechanical properties.We explored the effects of Cu-rich particles and cementite precipitated in the tempering process on the austenite reversion during the subsequent annealing process.Both experiments and numerical simula-tions verified that the austenite inherited from cementite had a finer size and a higher Mn enrichment compared with the austenite originating from the tempered martensite matrix.In addition,quantitative evaluations revealed that the pinning effect exerted by the Cu-rich particles could significantly hinder theα/γinterface migration and the recrystallized grain growth,thereby further refining the final mi-crostructure.With contributions from the effects of dual nanoprecipitates on the austenite reversion,the heterogeneous austenite grains inherited from varying nucleation sites ensured the sustained and gradual deformation-induced martensite and twinning formation.Therefore,the Cu-added steels subjected to a tempering-annealing process achieved synergetic enhancement of the tensile strength from 1055 MPa to 1250 MPa and elongation from 33%to 45%.This strategy may provide new guidance for the development and alloy design of high-performance medium Mn steels.
基金Sponsored by National Natural Science Foundation of China(51371057,11172187)National Basic Research Program(973 Program)of China(2010CB630803)Program for New Century Excellent Talents in University of China(NCET-12-0372)
文摘A duplex ultrafine microstructure in a medium manganese steel (0.2C-5Mn) was produced by austenite re- verted transformation annealing (ART-annealing). The microstructural evolution during annealing was examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Based on the microstructure examination, it was found that some M3C type carbides appeared in the martensitic matrix at the beginning of the ART-annealing. But with further increasing annealing time, these carbides would be dissolved and finally disappeared. Meanwhile, the austenite lath was developed in the ART-annealing process and the volume fraction of austenite increosed with the increase of the annealing time, which resulted in a duplex microstructure con- sisting of ultrafine-grained ferrite and large fraction of reverted austenite after long time annealing. The mechanical property examinations by uniaxial tensile tests showed that ART-annealing (6 h, 650 ℃) resulted in a superhigh product of strength to elongation up to 42 GPa ·%.
基金financial support from National Natural Science Foundation of China[Nos.51831002 and 51861135302]the Fundamental Research Funds for the Central Universities(No.FRF-TP-18-002C2)。
文摘Ultrafast heating(UFH)at the rates of 10-300℃/s was employed as a new strategy to anneal a coldrolled 7 wt%Mn steel,followed by the immediate cooling.Severely deformed strain-induced martensite and lightly-deformed thermal martensite,both had been already enriched with C and Mn before,transformed to fine and coarse austenite grains during the UFH,leading to the bimodal size distribution.Compared with the long intercritical annealing(IA)process,the UFH processes produced larger fraction of RA grains(up to 37%)with a high density of dislocation,leading to the significant increase in yield strength by 270 MPa and the product of strength and elongation up to 55 GPa%due to the enormous work hardening capacity.Such a significant strengthening is first attributed to high density dislocations preserved after UFH and then to the microstructural refinement and the precipitation strengthening;whilst the sustainable work hardening is attributed to the successive TRIP effect during deformation,resulting from the large fraction of RA instantly formed with the bimodal size distribution during UFH.Moreover,the results on the microstructural characterization,thermodynamics calculation on the reverse transformation temperature and the kinetic simulations on the reverse transformation all suggest that the austenitization during UFH is displacive and involves the diffusion and partition of C.Therefore,we propose that it is a bainite-like transformation.
基金financial support from National Natural Science Foundation of China (Nos. 51861135302 and 51831002)the National Natural Science Foundation (No. 51904028)+2 种基金Fundamental Research Funds for the Central Universities (No. 06600019, 06500151)the Deutsche Forschungsgemeinschaft (DFG) for funding the research work (grant number BL 402/49–1, “Characterizing and modeling on microstructural evolution during intercritical annealing of high performance medium Mn steel”)the Powder Diffraction and Total Scattering Beamline P02.1 of PETRA III at DESY (Proposal No.: I-20191416)
文摘In this paper, we report the influence of cooling processes on the yielding behavior of a medium Mn steel(MMS) with triplex microstructure, i.e. austenite(γ), ferrite(α) and as-quenched martensite(α’). After the intercritical annealing(IA) at both 725℃ and 750℃, the steel was subjected to the two cooling processes, i.e. air cooling(AC) and water quenching(WQ). It exhibits the discontinuous yielding after the AC following the IA at 750℃ while the continuous yielding after the WQ. Compared with WQ process,both the dilatometry and the microstructural examinations show that the AC process leads to lower Ms temperature, larger retained austenite(RA) fraction and less martensite, the latter is always companied with geometry necessary dislocations(GNDs) generated near the α/α’ interfaces. Considering the complexity of nanosized tri-phases in this steel, the presence of martensite with key features in the resultant specimens was systematically examined by atom probe tomography(APT) on the samples prepared by the specific target lift-out method. The APT results directly revealed the C/Mn co-segregation at the α’/αinterfaces in the AC samples but not in WQ samples. The numerical simulation results further suggest that the segregation of C and Mn at the α’/α interfaces may be due to different mechanisms. We conclude that the yielding of triplex MMS is determined by both the quantity of GNDs generated near theα/α’ interfaces, which increases with martensite fraction, and the extent of their immobilization resulting from the interfacial segregation of solute atoms when the presence of martensite is sufficient. WQ tends to suppress the discontinuous yielding of MMS since the rapid cooling may promote more martensite formed with the increasing quantity of GNDs and prevent the interfacial segregation of both C and Mn.
基金financially supported by the National Natural Science Foundation of China(Nos.52071322 and 51771192).
文摘The objective of the present study is to develop heterogeneous microstructure in cold-rolled medium Mn steels(MMSs)annealing strategy.The cold-rolled Fe-4.7Mn-0.15C(wt%)steel is annealed twice at different temperatures to produce an ultra-fine heterogeneous microstructure with lath-shaped and granular-shaped retained austenite.Excellent mechanical behavior of significant strength enhancement with negligible ductility loss can be achieved.The high strength-ductility properties are attributed to the active transformation induced plasticity effect over a broad strain range owing to dispersive mechanical stabilities of the heterogeneous austenite.Furthermore,the typical yield point elongation phenomenon which is commonly observed in cold-rolled MMSs can be effectively reduced by this microstructural strategy.
基金supported by the National Key Research and Development Program [Grant No.2018YFA0702900]the National Natural Science Foundation of China [Grant No.U1508215,51774265]+3 种基金the National Science and Technology Major Project of China [Grant No.2019ZX06004010]the Key Program of the Chinese Academy of Sciences [Grant No.ZDRW-CN-2017-1]the Key Program of Natural Science Foundation of Hebei Province of China[Grant No.E2017203161]the CAS Interdisciplinary Innovation Team。
文摘The carbide precipitation behavior and mechanical properties of advanced high strength steel deformed at different temperatures are investigated by X-ray diffractometer(XRD),scanning electron microscope(SEM),transmission electron microscope(TEM) equipped with an energy dispersing spectroscopy(EDS),and tensile tests.The medium Mn steel was subjected to controlled deformation up to 70% at 750℃,850℃,950℃,and 1050℃,and then quenched with water to room temperature,followed by intercritical annealing at 630℃ for 10 min.In comparison with the undeformed and quenched specimen,it can be concluded that acicular cementite precipitates during the quenching and cooling process,while granular NbC is the deformation induced precipitate and grows during the following annealing process.As the deformation temperature increases from 750℃ to 1050℃,the product of strength and elongation increases at first and then decreases.The smallest average size of second phase particles(20 nm) and the best mechanical properties(32.5 GPa%) can be obtained at the deformation temperature of 950℃.
基金supported financially by the National Key Research and Development Program(No.2016YFB0701401)the Fundamental Research Funds for the Central Universities(No.DUT18LAB01)。
文摘Medium Mn steel was metal inert gas(MIG)welded with NiCrMo-3 and 307 Si filler wires.The effect of filler wires on the microstructure and mechanical properties of joint was investigated,and the carbide precipitates were contrastively discussed.The results revealed that the microstructure of weld metal,heat-affected zone and base metal are austenite.Obvious grain coarsening occurred in the heat-affected zone(HAZ),and the maximum grain size grew up to 160μm.In HAZ,C and Cr segregated at grain boundaries,the carbides was identified as Cr7 C3.The dispersive(Nb,Mo)C phase was also found in weld metal with NiCrMo-3 filler wire.All the welded joints failed in HAZ during tensile tests.The tensile strength of welded joint with NiCrMo-3 filler wire was 675 MPa,which is much higher than that with307 Si filler wire.In comparison to base metal,higher microhardness and lower impact toughness were obtained in HAZ for these two welded joints,which was attributed to the precipitation of Cr7 C3 phase and grain coarsening.The impact toughness around the fusion line is the worst for these two welded joints.
基金Haiwen Luo and Bin Hu acknowledge financial support from the National Natural Science Foundation of China(Nos.51831002,51904028 and 52233018)Fundamental Research Funds for the Central Universities(No.06500151)The present work is re-lated to awarded patents(No.201910244716.9 in China and No.US 10793932 in the USA).
文摘We develop a new ultrastrong medium Mn steel with a density reduced to 7.39 g cm^(-3).It has a novel tri-phase microstructure comprising a hierarchical martensitic matrix(α’),dispersed ultra-fine-retained austenite grains(γ),and both compressed and{200}orientedδ-ferrite lamellas,the latter’s formation is due to the alloying of high Al and Si contents for reducing density.As a result,both ultrahigh ultimate tensile strength of 2.1 GPa and good ductility of 16%are achieved after an extraordinary plastic strain hardening increment of about 1.4 GPa.The in-situ synchrotron-based high-energy(HE)X-ray diffraction(XRD)examinations during the tensile deformation revealed that the initial presence of residual com-pressive stress inδ-ferrite could increase the stress required to initiate the plastic tensile deformation of the specimen,leading to the isolatedδ-ferrite lamellas mostly deformed elastically to coordinate the plastic deformation of the martensitic matrix during yielding.During the plastic deformation,the gradual release of residual compressive stress inδandα’,the dislocation multiplication in all the three phases and the successiveγ-to-α’transformation all contribute to such a prominent work hardening increment.This study facilitates the development of novel strategies for fabricating ultrastrong but light steels.
基金financial support of the State Key Research and Development Program of China(Grant No.2017YFB0304404)
文摘Based on uniaxial tensile and plane strain deformation tests, the effects of strain states on the stability of RA (retained austenite) in medium Mn steels, which were subjected to IA (intercritical annealing) and Q&P (quenching and partitioning) processing, were investigated. The volume fractions of RA before and after deformation were measured at different equivalent strains. The transformation behaviors of RA were also investigated. The stability of RA differed across two different transformation stages at the plane strain state: the stability was much lower in the first stage than in the second stage. For the uniaxial ten sion strain state, the stability of RA corresponded only to a single transformation stage. The main reason was that there were two types of transformations from RA in the medium Mn steel for the plane strain state. One type was that the martensite originated in the strain-induced stacking faults (SISF). The other type was the strain-induced directly twin martensite at a certain equivalent strain. However, for the uniax- ial tension state, only the strain-induced twin martensite was observed. Dislocation lines and dislocation tangles were also observed in specimens deformed at different strain states. In addition, complex micro- structures of stacking faults and lath-like phases were observed within a grain at the plane strain state.
基金support from National Natural Science Foundation of China(No.52101146)the support from National Natural Science Foundation of China(No.52130102)+3 种基金National Key Research and Development Program of China(No.2019YFA0209900)Research Grants Council of Hong Kong(No.R7066-18)Guangzhou Municipal Science and Technology Project(No.202007020007)Guangdong Basic and Applied Basic Research Foundation of China(No.2020B1515130007).
文摘Advanced high-strength steels are key structural materials for the development of next-generation energy-efficient and environmentally friendly vehicles.Medium Mn steel,as one of the latest generation advanced high-strength steels,has attracted tremendous attentions over the past decade due to its excellent mechanical properties.Here,the state-of-the-art developments of medium Mn steel are systematically reviewed with focus on the following crucial aspects:(a)the alloy design strategies;(b)the thermomechanical processing routes for the optimizations of microstructure and mechanical properties;(c)the fracture mechanisms and toughening strategies;(d)the hydrogen embrittlement mechanisms and improvement strategies.
基金H.Chen acknowledges financial support from the National Natural Science Foundation of China(Nos.51922054,U1860109 and U1808208)the National Key Research and Development Program of China(2022YFE0110800)+1 种基金Z.G.Yang acknowledges financial support from the National Natural Science Foundation of China(No.52171008)B.Sun acknowledgesfinancial support from the National Natural Science Foundation of China(No.52275147).
文摘Deformation-induced martensite transformation from metastable retained austenite is one of the most efficient strain-hardening mechanisms contributing to the enhancement of strength-ductility synergy in advanced high-strength steels.However,the hard transformation product(often-martensite)and the H redistribution associated with phase transformation essentially decrease materials’resistance to hydrogen embrittlement.To solve this fundamental conflict,we introduce a new microstructure architecting strategy based on an accurately design of core–shell compositional distribution inside the austenite phase.We employed this approach in a typical medium Mn steel(8 wt.%Mn)with an ultrafine grained austenite-ferrite microstructure.We produced a high Mn content(15–16 wt.%)in the austenite shell region and a low Mn content(~12 wt.%)in the core region,through a thermodynamics-guided two-step austenite reversion treatment.During room-temperature deformation,the austenite core transforms continuously starting from a low strain,providing a high and persistent strain-hardening rate.The transformation of Mn-rich austenite shell,on the other hand,occurs only at the latest regime of the deformation,thus effectively inhibiting the nucleation of H-induced cracks at ferrite/deformation-induced martensite interfaces as well as suppressing their growth and percolation.This step-wise transformation,tailored directly targeted to protect the hydrogen-sensitive microstructure defects(interfaces),results in a significantly enhanced hydrogen embrittlement resistance without sacrificing the mechanical performance in hydrogen-free condition.The design of compositional core–shell structure is expected to be applicable to,at least,other multiphase advanced high-strength steels containing metastable austenite.
文摘For the purpose of developing a 1 500 MPa grade steel sheet with excellent strength and ductility, a 0.15C-10Mn-1.5Al steel was employed to study austenite stability and microstructural evolution based on a novel double annealing processing.After a conventional intercritical annealing process, the sample was heated again to a temperature higher than A_(c3) for a very short time to generate austenite grains with different manganese content;thus, the microstructure of martensite plus austenite can be obtained at room temperature.The experimental results show that with increasing annealing temperature, the tensile strength and yield strength increase.When the annealing temperature was higher than 820 ℃,the microstructure consisted of martensite plus austenite, and the tensile strength almost remained invariant with the annealing temperature.A tensile strength of 1 537 MPa and an elong-ation of 25.1% were achieved for the 820 ℃ condition.The volume fractions of austenite and martensite were identified by X-ray diffraction.It was found that with increasing annealing temperature, the volume fraction of the retained austenite decreased, and the ductility also had a gradual downward trend.The related austenite stability was discussed here as well.