期刊文献+
共找到193,822篇文章
< 1 2 250 >
每页显示 20 50 100
Multiphase-field simulation of austenite reversion in medium-Mn steels 被引量:2
1
作者 Yan Ma Rui Zheng +4 位作者 Ziyuan Gao Ulrich Krupp Hai-wen Luo Wenwen Song olfgang Bleck 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期847-853,共7页
Medium-Mn steels have attracted immense attention for automotive applications owing to their outstanding combination of high strength and superior ductility.This steel class is generally characterized by an ultrafine-... Medium-Mn steels have attracted immense attention for automotive applications owing to their outstanding combination of high strength and superior ductility.This steel class is generally characterized by an ultrafine-grained duplex microstructure consisting of ferrite and a large amount of austenite.Such a unique microstructure is processed by intercritical annealing,where austenite reversion occurs in a fine martensitic matrix.In the present study,austenite reversion in a medium-Mn alloy was simulated by the multiphase-field approach using the commercial software MICRESS®coupled with the thermodynamic database TCFE8 and the kinetic database MOBFE2.In particular,a faceted anisotropy model was incorporated to replicate the lamellar morphology of reversed austenite.The simulated microstructural morphology and phase transformation kinetics(indicated by the amount of phase)concurred well with experimental observations by scanning electron microscopy and in situ synchrotron high-energy X-ray diffraction,respectively. 展开更多
关键词 medium-mn steels intercritical annealing austenite reversion phase-field simulation faceted anisotropy model
下载PDF
Medium-Mn steels for hot forming application in the automotive industry 被引量:8
2
作者 Shuo-shuo Li Hai-wen Luo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期741-753,共13页
Advanced high-strength steels have been widely used to improve the crashworthiness and lightweight of vehicles.Different from the popular cold stamping,hot forming of boron-alloyed manganese steels,such as 22MnB5,coul... Advanced high-strength steels have been widely used to improve the crashworthiness and lightweight of vehicles.Different from the popular cold stamping,hot forming of boron-alloyed manganese steels,such as 22MnB5,could produce ultra-high-strength steel parts without springback and with accurate control of dimensions.Moreover,hot-formed medium-Mn steels could have many advantages,including better mechanical properties and lower production cost,over hot-formed 22MnB5.This paper reviews the hot forming process in the automotive industry,hot-formed steel grades,and medium-Mn steel grades and their application in hot forming in depth.In particular,the adaptabilities of medium-Mn steels and the presently popular 22MnB5 into hot forming were compared thoroughly.Future research should focus on the technological issues encountered in hot forming of medium-Mn steels to promote their commercialization. 展开更多
关键词 medium-mn transformation-induced plasticity steel hot forming mechanical properties retained austenite BAKING
下载PDF
Quickly obtaining densely dispersed coherent particles in steel matrix and its related mechanical property
3
作者 Xiaoxiao Wang Qingsong Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期111-118,共8页
Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid ... Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid route and the solid-solid route.However,the formation of DCN structures in steel requires long processes and complex steps.So far,obtaining steel with coherent particle enhancement in a short time remains a bottleneck,and some necessary steps remain unavoidable.Here,we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field.Ti-Y-Mn-O particles had an average size of around(3.53±1.21)nm and can be obtained in just around 180 s.These small nanoparticles were coherent with the matrix,implying no accumulated dislocations between the particles and the steel matrix.Our findings have a potential application for improving material machining capacity,creep resistance,and radiation resistance. 展开更多
关键词 ferritic steels coherent particles MICROSTRUCTURE compression test work hardening
下载PDF
The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process 被引量:12
4
作者 D.P.Yang P.J.Du +1 位作者 D.Wu H.L.Yi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第16期205-215,共11页
The martensitic hot-rolled 0.3 C-6 Mn-1.5 Si(wt%)steel was annealed at 630℃for 24 h to improve its cold rollability,followed by cold rolling and annealing at 670℃for 10 min.The annealing process was designed based o... The martensitic hot-rolled 0.3 C-6 Mn-1.5 Si(wt%)steel was annealed at 630℃for 24 h to improve its cold rollability,followed by cold rolling and annealing at 670℃for 10 min.The annealing process was designed based on the capacities of industrial batch annealing and continuous annealing lines.A duplex submicron austenite and ferrite microstructure and excellent tensile properties were obtained finally,proved the above process is feasible."Austenite memory"was found in the hot-rolled and annealed sample which restricted recrystallization of lath martensite,leading to lath-shaped morphology of austenite and ferrite grains."Austenite memory"disappeared in the cold-rolled and annealed sample due to austenite random nucleation and ferrite recrystallization,resulting in globular microstructure and refinement of both austenite and ferrite grains.The austenite to martensite transformation contributed most of strain hardening during deformation and improved the uniform elongation,but the dislocation strengthening played a decisive role on the yielding behavior.The tensile curves change from continuous to discontinuous yielding as the increase of cold-rolled reduction due to the weakening dislocation strengthening of austenite and ferrite grains related to the morphology change and grain refinement.A method by controlling the cold-rolled reduction is proposed to avoid the Lüders strain. 展开更多
关键词 medium-mn steel Intercritical annealing Austenite memory Yielding behavior TRIP effect
原文传递
Recent progress in microstructural evolution,mechanical and corrosion properties of medium-Mn steel 被引量:3
5
作者 Yan-xin Qiao Zhi-bin Zheng +2 位作者 Hao-kun Yang Jun Long Pei-xian Han 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第8期1463-1476,共14页
Medium-manganese(Mn)steel(MMS)has remarkable characteristics of high strength,strong work-hardening capacity,and wear resistance,being a promising third-generation advanced high-strength steel with lower raw material ... Medium-manganese(Mn)steel(MMS)has remarkable characteristics of high strength,strong work-hardening capacity,and wear resistance,being a promising third-generation advanced high-strength steel with lower raw material cost compared with other generations of advanced high-strength steel.The chemical composition and processing route play critical roles in determining the microstructural evolution of the MMS,and the microstructure composition significantly influences the mechanical,corrosion and wear properties of the steel.Hence,a lot of research work focus on exploring the direct relation between microstructural evolution and mechanical/corrosion/wear properties,and the progress has the following crucial aspects:(1)alloying design on the phase composition and carbide precipitation,(2)processing route on regulating microstructure evolution and twinning-induced plasticity and/or transformation-induced plasticity strengthening mechanism,(3)work-hardening,corrosion,and corrosion resistance of the regulated MMS,and(4)fracture and failure mechanism of MMS under tensile,corrosion and wear damages,as well as the improvement strategies. 展开更多
关键词 medium-mn steel MICROSTRUCTURE Mechanical property Corrosion property Alloying design Processing route Fracture mechanism
原文传递
Microstructure and mechanical properties of hot-rolled V-microalloyed Al-containing medium-Mn steel 被引量:1
6
作者 Ming Lei Wei-jun Hui +2 位作者 Jiao-jiao Wang Yong-jian Zhang Xiao-li Zhao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2020年第5期537-548,共12页
The microstructure and mechanical properties of a V-microalloyed Al-containing medium-Mn steel after hot rolling and intercritical annealing(IA)are explored.The tested steel exhibits a fne multiphase microstructure co... The microstructure and mechanical properties of a V-microalloyed Al-containing medium-Mn steel after hot rolling and intercritical annealing(IA)are explored.The tested steel exhibits a fne multiphase microstructure consisting of bimodal sizes of ferrite and retained austenite plus considerable amount of fne VC and/or M3C precipitates.Physical-chemical phase analysis shows that about 71.0%of the total V is in VC phase and more than 93%of VC particles is less than 5 nm.The calculated precipitation strengthening values of VC are^347 and^234 MPa for the specimens intercritically annealed at 625 and 750℃,respectively.An excellent combination of strength and ductility as high as^50 GPa%and yield strength(YS)of 890 MPa was obtained at intercritical temperature(TIA)of 725℃,although it does not correspond to the maximum precipitation strengthening of VC phase.Therefore,it is suggested that an optimization of TIA corresponding to both excellent combination of strength and ductility and high YS should be further explored through chemical composition and IA process optimization. 展开更多
关键词 medium-mn steel VANADIUM Intercritical annealing MICROSTRUCTURE Mechanical property
原文传递
High Ductility and Toughness of a Micro-duplex Medium-Mn Steel in a Large Temperature Range from—196 ℃ to 200 ℃
7
作者 Si-lian CHEN Jun HU +2 位作者 Xiao-dan ZHANG Han DONG Wen-quan CAO 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第12期1126-1130,共5页
A medium-Mn steel (0.2C5Mn) was processed by intercritical annealing at different temperatures (625 ℃ and 650 ℃ ). An ultrafine-grained micro-duplex structure consisting of alternating austenite and ferrite lath... A medium-Mn steel (0.2C5Mn) was processed by intercritical annealing at different temperatures (625 ℃ and 650 ℃ ). An ultrafine-grained micro-duplex structure consisting of alternating austenite and ferrite laths was de- veloped by austenite reverse transformation (ART) during intercritical annealing after forging and hot rolling. Ultra- high ductility with a total elongation higher than 30% was achieved in the temperature range from -196 ℃ to 200 ℃, and high impact toughness no less than 200 J at -40 ℃ was obtained. Based on the analysis of microstructure and mechanical properties, it was found that the enhanced ductility was determined by the phase transformation effect of austenite (TRIP effect), while the delayed ductile to brittle transition was controlled by austenite stability. 展开更多
关键词 high strength high ductility intercritical annealing medium-mn steel ultrafine grain size
原文传递
Deformation mechanisms for a new medium-Mn steel with 1.1 GPa yield strength and 50% uniform elongation
8
作者 Wei Wang Yanke Liu +6 位作者 Zihan Zhang Muxin Yang Lingling Zhou Jing Wang Ping Jiang Fuping Yuan Xiaolei Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第1期110-118,共9页
A new medium-Mn steel was designed to achieve unprecedented tensile properties,with a yield strength beyond 1.1 GPa and a uniform elongation over 50%.The tensile behavior shows a heterogeneous deforma-tion feature,whi... A new medium-Mn steel was designed to achieve unprecedented tensile properties,with a yield strength beyond 1.1 GPa and a uniform elongation over 50%.The tensile behavior shows a heterogeneous deforma-tion feature,which displays a yield drop followed by a large Lüders band strain and several Portevin-Le Châtelier bands.Multiple strain hardening mechanisms for excellent tensile properties were revealed.Firstly,non-uniform martensite transformation occurs only within a localized deformation band,and ini-tiation and propagation of every localized deformation band need only a small amount of martensite transformation,which can provide a persistent and complete transformation-induced-plasticity effect dur-ing a large strain range.Secondly,geometrically necessary dislocations induced from macroscopic strain gradient at the front of localized deformation band and microscopic strain gradient among various phases provide strong heter-deformation-induced hardening.Lastly,martensite formed by displacive shear trans-formation can inherently generate a high density of mobile screw dislocations,and interstitial C atoms segregated at phase boundaries and enriched in austenite play a vital role in the dislocation multipli-cation due to the dynamic strain aging effect,and these two effects provide a high density of mobile dislocations for strong strain hardening. 展开更多
关键词 medium-mn steel Strain hardening DUCTILITY Martensite transformation Strain gradient Mobile dislocations
原文传递
Effect of microstructure evolution on Luders strain and tensile properties in an intercritical annealing medium-Mn steel
9
作者 Shuai Wang Wei-jian Chen +3 位作者 Zheng-zhi Zhao Xiao-long Zhao Xiao-yang Luo Qiang Wang 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第6期762-772,共11页
The influence of microstructural characteristics on Lu¨ders strain and mechanical properties was explored by means of altering thermo-mechanical circumstances in an intercritical annealing(IA)medium-Mn Fe-11Mn-0.... The influence of microstructural characteristics on Lu¨ders strain and mechanical properties was explored by means of altering thermo-mechanical circumstances in an intercritical annealing(IA)medium-Mn Fe-11Mn-0.09C-0.25Si(wt.%)steel.By IA of cold-rolled samples with severe plastic deformation,exclusively equiaxed dual phases were obtained because of active recovery and recrystallization.The equiaxed austenite(gamma E)with a larger size and inadequate chemical concentration was more readily transformed into martensite,and subsequent transformation-induced plasticity(TRIP)effect was triggered actively at relatively higher IA temperature,lessening localized deformation.In addition,grown-in dislocations were prone to multiply and migrate around a broad mean free path for coarser equiaxed ferrite(alpha E)due to weakening dynamic recovery;therefore,it was the ensuing increased mobility of dislocations instead of reserving plentiful initial dislocation density that facilitated the propagation velocity of Luders bands and the accumulation of work hardening.In contrast,the bimodal-grained microstructure with lath-like and equiaxed austenite(gamma L+gamma E)satisfactorily contributed to a smaller yield point elongation(YPE)without compromise of comprehensive mechanical properties on the grounds that austenitic gradient stability gave rise to discontinuous but sustainable TRIP effect and incremental work hardening.Hence,Luders strain is closely related to the absence of work hardening in the region which yields locally.It follows that the decreased stability of retained austenite,favorable mobility of dislocations and the bimodal-grained structure all prominently make up for the insufficiency of work hardening,thereof resulting in a limited YPE. 展开更多
关键词 Luders strain medium-mn steel Work hardening DISLOCATION Mechanical property
原文传递
Improving toughness of medium-Mn steels after friction stir welding through grain morphology tuning
10
作者 Mun Sik Jeong Tak Min Park +5 位作者 Dong-Il Kim Hidetoshi Fujii Hye Ji Im Pyuck-Pa Choi Seung-Joon Lee Jeongho Han 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第23期243-254,共12页
This work demonstrated the viability of friction stir welding for the welding of medium-Mn steels when used as cryogenic vessel materials for liquefied gas storage.We used an intercritically annealed Fe-7 Mn-0.2 C-3 A... This work demonstrated the viability of friction stir welding for the welding of medium-Mn steels when used as cryogenic vessel materials for liquefied gas storage.We used an intercritically annealed Fe-7 Mn-0.2 C-3 Al(wt.%)steel with a dual-phase(α'martensite andγ_(R) retained austenite)nanolaminate structure as a base material and systematically compared its microstructure and impact toughness after friction stir and tungsten inert gas welding.The friction stir welded specimen exhibited a large amount ofγ_(R) phase owing to a relatively low temperature during welding,whereas the tungsten inert gas welded specimen comprised only theα'phase.Furthermore,the friction stir welded steel exhibited a tuned morphology of nanoscale globular microstructure at the weld zone and did not exhibit any prior austenite grain boundary due to active recrystallization caused by deformation during welding.The preserved fraction ofγ_(R) and morphological tuning in the weldment improved the impact toughness of the friction stir welded steel at low temperatures.In the steel processed by tungsten inert gas welding,the notch crack propagated rapidly along the prior austenite grain boundaries-weakened by Mn and P segregations-resulting in poor impact toughness.However,the friction stir welded steel exhibited a higher resistance against notch crack propagation due to the slow crack propagation along the ultrafine ferrite/ferrite(α/α)interfaces,damage tolerance by the active transformation-induced plasticity from the large amount ofγR,and enhanced boundary cohesion by suppressed Mn and P segregations. 展开更多
关键词 Charpy impact test Transformation-induced plasticity Friction stir welding Phase stability medium-mn steel
原文传递
Evaluation of hydrogen effect on the fatigue crack growth behavior of medium-Mn steels via in-situ hydrogen plasma charging in an environmental scanning electron microscope
11
作者 Di Wan Yan Ma +4 位作者 Binhan Sun Seyed Mohammad Javad Razavi Dong Wang Xu Lu Wenwen Song 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第26期30-43,共14页
Fatigue crack growth(FCG)tests were conducted on a medium-Mn steel annealed at two intercritical annealing temperatures,resulting in different austenite(γ)to fe rrite(α)phase fractions and differentγ(meta-)stabilit... Fatigue crack growth(FCG)tests were conducted on a medium-Mn steel annealed at two intercritical annealing temperatures,resulting in different austenite(γ)to fe rrite(α)phase fractions and differentγ(meta-)stabilities.Novel in-situ hydrogen plasma charging was combined with in-situ cyclic loading in an environmental scanning electron microscope(ESEM).The in-situ hydrogen plasma cha rging increased the fatigue crack growth rate(FCGR)by up to two times in comparison with the reference tests in vacuum.Fractographic investigations showed a brittle-like crack growth or boundary cracking manner in the hydrogen environment while a ductile transgranular manner in vacuum.For both materials,the plastic deformation zone showed a reduced size along the hydrogen-influenced fracture path in comparison with that in vacuum.The difference in the hydrogen-assisted FCG of the medium-Mn steel with different microstructures was explained in terms of phase fraction,phase stability,yielding strength and hydrogen distribution.This refined study can help to understand the FCG mechanism without or with hydrogen under in-situ hydrogen charging conditions and can provide some insights from the applications point of view. 展开更多
关键词 Hydrogen embrittlement Fatigue crack growth(FCG) Electron channeling contrast imaging(ECCI) medium-mn steel Hydrogen plasma
原文传递
Recent progress in medium-Mn steels made with new designing strategies, a review 被引量:32
12
作者 Bin Hu Haiwen Luo +1 位作者 Feng Yang Han Dong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第12期1457-1464,共8页
After summarizing the relevant researches on the medium Mn steels in references, two new targets on the tensile properties have been defined. One is that both transformation-induced(TRIP) and twinninginduced plastic... After summarizing the relevant researches on the medium Mn steels in references, two new targets on the tensile properties have been defined. One is that both transformation-induced(TRIP) and twinninginduced plasticity(TWIP) could be realized for the steel with a relatively low Mn content, which exhibits the similar tensile properties to the classical TWIP steels with higher Mn content. The other is to achieve ultrahigh ultimate tensile strength(〉1.5 GPa) without sacrificing formability. To achieve these goals,new designing strategies was put forward for compositions and the processing route. In particular, warm rolling was employed instead of the usual hot/cold rolling process because the former can produce a mixture of retained austenite grains with different morphologies and sizes via the partial recrystallization. Consequently, the retained austenite grains have a wide range of mechanic stability so that they can transform to martensite gradually during deformation, leading to enhanced TRIP effect and then improved mechanic properties. Finally, it is succeeded in manufacturing these targeted medium Mn steels in laboratory, some of them even exhibit better tensile properties than our expectation. 展开更多
关键词 Medium Mn steel Retained austenite Transformation-induced plasticity Twinning-induced plasticity Mechanical properties
原文传递
A thermodynamic model on predicting density of medium-Mn steels with experimental verification 被引量:2
13
作者 Guo-hui Shen Peng-yu Wen Hal-wen Luo 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第11期1078-1084,共7页
A new model on predicting the density of hot-rolled multi-phased medium-Mn steel has been presen ted on the basis of thermodynamic calculations. This is an integrated model, which includes one for calculating the reta... A new model on predicting the density of hot-rolled multi-phased medium-Mn steel has been presen ted on the basis of thermodynamic calculations. This is an integrated model, which includes one for calculating the retained austenite (RA) fraction and the other for volume expansion during the aus tenite-to martensite transformation, because both of them are key parameters for calculating the den- sity of steel at ambient temperature. The existing empirical equations for calculating Mx temperature and lattice constants of both martensite and austenite have been all rcassessed by the XRD measure ments on the microstructures of seven hot-rolled medium-Mn steels. Finally, the densities ot seven steels were calculated merely from compositions and compared with the measured ones. The differ ence between them is no more than 1 %, suggesting that the presented model should be of good value in designing the low density steels. 展开更多
关键词 Density Medium Mn steel Retained austenite fraction Volume expansion Transformation
原文传递
Intercritical Rolling Induced Ultrafine Lamellar Structure and Enhanced Mechanical Properties of Medium-Mn Steel 被引量:6
14
作者 Wei ZHAN Li-qiang CAO +3 位作者 Jun HU Wen-quan CAO Jian LI Han DONG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第5期551-558,共8页
The medium-Mn steel with ferrite and austenite structure was rolled in the intercritical region down to dif- ferent rolling reduction. The microstructure and mechanical properties of the rolled steels were investigate... The medium-Mn steel with ferrite and austenite structure was rolled in the intercritical region down to dif- ferent rolling reduction. The microstructure and mechanical properties of the rolled steels were investigated by scan- ning electron microscopy, transmission electron microscopy, X-ray diffraction and tensile tests. It was found that the ferrite and austenite structure gradually evolved into an ultrafine structure from the random directional lath structure to lamellar structure with lath longitudinal direction parallel to the rolling direction with increasing rolling strain. It was found that the thickness of the laths was gradually refined with increasing rolling strain. The lath thickness is about 0. 15 9m stored with high density dislocations and the austenite volume fraction of the steel is about 24% after 80% rolling reduction. Furthermore, it was interesting to find that yield strength, tensile strength and total elongation of the 80% rolled medium-Mn steel are about 1000 MPa, 1250 MPa and 24%, respectively, demonstrating an excellent combination of the strength and ductility. Based on the microstructure examination, it was proposed that the grain refinement of the medium-Mn steels could be attributed to the duplex structure and the low rolling temperature. Analysis of the relationship between the microstructure and the mechanical properties indicated that the high yield strength mainly resulted from the ultrafine grain size and the high density dislocation, but the improved ductili- ty may be attributed to the large fractions of austenite retained after intercritical rolling. 展开更多
关键词 intercriticaI roiling medium manganese steel rolling reduction ultrafine lameUar structure
原文传递
Thermal stability of retained austenite and mechanical properties of medium-Mn steel during tempering treatment 被引量:4
15
作者 Xiao-li Zhao Yong-jian Zhang +2 位作者 Cheng-wei Shao Wei-jun Hui Han Dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第8期830-837,共8页
The thermal stability of retained austenite(RA)and the mechanical properties of the quenched and intercritical annealed 0.1C-5Mn steel with the starting ultrafine lamellar duplex structure of ferrite and retained au... The thermal stability of retained austenite(RA)and the mechanical properties of the quenched and intercritical annealed 0.1C-5Mn steel with the starting ultrafine lamellar duplex structure of ferrite and retained austenite during tempering within the range from 200 to 500°C were studied by X-ray diffraction(XRD),transmission electron microscopy(TEM)and tensile testing.The results showed that there was a slight decrease in the RA volume fraction with increasing tempering temperature up to 400°C.This caused a slight increase in the ultimate tensile strength(UTS)and a slight decrease in the total elongation(TE);thus,the product of UTS to TE(UTS×TE)as high as 31GPa·% was obtained and remained nearly unchanged.However,aportion of the RA began to decompose when tempered at 500°C and thus caused a^35% decrease of the RA fraction and a^16%decrease of the value of UTS×TE.It is concluded that the ultrafine lamellar duplex structure is rather stable and the excellent combination of strength and ductility could be retained with tempering temperature up to 400°C.Thus,thermal processes such as galvanization are feasible for the tested steel provided that their temperatures are not higher than 400°C. 展开更多
关键词 Medium-manganese transformation-induced plasticity steel Tempering Microstructure Mechanical property Retained austenite
原文传递
Development and prospects of molten steel deoxidation in steelmaking process 被引量:2
16
作者 Zhongliang Wang Yanping Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期18-32,共15页
In the long traditional process of steelmaking,excess oxygen is blown into the converter,and alloying elements are used for deoxidation.This inevitably results in excessive deoxidation of products remaining within the... In the long traditional process of steelmaking,excess oxygen is blown into the converter,and alloying elements are used for deoxidation.This inevitably results in excessive deoxidation of products remaining within the steel liquid,affecting the cleanliness of the steel.With the increasing requirements for steel performance,reducing the oxygen content in the steel liquid and ensuring its high cleanliness is necessary.After more than a hundred years of development,the total oxygen content in steel has been reduced from approximately 100×10^(-6)to approximately 10×10^(-6),and it can be controlled below 5×10^(-6)in some steel grades.A relatively stable and mature deoxidation technology has been formed,but further reducing the oxygen content in steel is no longer significant for improving steel quality.Our research team developed a deoxidation technology for bearing steel by optimizing the entire conventional process.The technology combines silicon–manganese predeoxidation,ladle furnace diffusion deoxidation,and vacuum final deoxidation.We successfully conducted industrial experiments and produced interstitial-free steel with natural decarbonization predeoxidation.Non-aluminum deoxidation was found to control the oxygen content in bearing steel to between 4×10^(-6) and 8×10^(-6),altering the type of inclusions,eliminating large particle Ds-type inclusions,improving the flowability of the steel liquid,and deriving a higher fatigue life.The natural decarbonization predeoxidation of interstitial-free steel reduced aluminum consumption and production costs and significantly improved the quality of cast billets. 展开更多
关键词 steel deoxidation DEOXIDIZER metallurgical equipment bearing steel IF steel
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:3
17
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag 被引量:2
18
作者 Zihang Yan Qing Zhao +3 位作者 Chengzhi Han Xiaohui Mei Chengjun Liu Maofa Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期292-300,共9页
Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen... Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%. 展开更多
关键词 stainless steel slag SPINEL CHROMIUM waste remediation ferrous oxide
下载PDF
An Integrated Analysis on the Synergistic Reduction of Carbon and Pollution Emissions from China’s Iron and Steel Industry 被引量:1
19
作者 Quanyin Tan Fei Liu Jinhui Li 《Engineering》 SCIE EI CAS CSCD 2024年第9期111-121,共11页
Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions... Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future. 展开更多
关键词 Iron and steel industry Carbon and pollution emissions Synergistic reduction Technological structure steel scrap Cross-elasticity
下载PDF
Stress-assisted corrosion mechanism of 3Ni steel by using gradient boosting decision tree machining learning method 被引量:2
20
作者 Xiaojia Yang Jinghuan Jia +5 位作者 Qing Li Renzheng Zhu Jike Yang Zhiyong Liu Xuequn Cheng Xiaogang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1311-1321,共11页
Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st... Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection. 展开更多
关键词 weathering steel stress-assisted corrosion gradient boosting decision tree machining learning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部