期刊文献+
共找到133,312篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanical responses and crystal plasticity model of CoCrNi medium-entropy alloy under ramp wave compression
1
作者 Jinlei Dong Xuping Zhang +6 位作者 Guiji Wang Xianqian Wu Binqiang Luo Xuemiao Chen Fuli Tan Jianheng Zhao Chengwei Sun 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第5期93-108,共16页
It is of substantial scientific significance and practical value to reveal and understand the multiscale mechanical properties and intrinsic mechanisms of medium-entropy alloys(MEAs)under high strain rates and pressur... It is of substantial scientific significance and practical value to reveal and understand the multiscale mechanical properties and intrinsic mechanisms of medium-entropy alloys(MEAs)under high strain rates and pressures.In this study,the mechanical responses and deformation mechanisms of an equiatomic CoCrNi MEA are investigated utilizing magnetically driven ramp wave compression(RWC)with a strain rate of 105 s^(−1).The CoCrNi MEA demonstrates excellent dynamic mechanical responses and yield strength under RWC compared with other advanced materials.Multiscale characterizations reveal that grain refinement and abundant micromechanisms,including dislocation slip,stacking faults,nanotwin network,and Lomer–Cottrell locks,collectively contribute to its excellent performance during RWC.Furthermore,dense deformation twins and shear bands intersect,forming a weave-like microstructure that can disperse deformation and enhance plasticity.On the basis of these observations,we develop a modified crystal plasticity model with coupled dislocation and twinning mechanisms,providing a relatively accurate quantitative description of the multiscale behavior under RWC.The results of simulations indicate that the activation of multilevel microstructures in CoCrNi MEA is primarily attributable to stress inhomogeneities and localized strain during RWC.Our research offers valuable insights into the dynamic mechanical responses of CoCrNi MEA,positioning it as a promising material for use under extreme dynamic conditions. 展开更多
关键词 DEFORMATION alloy MICROSTRUCTURE
下载PDF
Effect of Al on microstructure and mechanical properties of cast CrCoNi medium-entropy alloy 被引量:6
2
作者 Qiang Hu Fu-chu Liu +5 位作者 Qian-lu Fan Hui Du Gang Liu Guang-hua Wang Zi-tian Fan and *Xin-wang Liu 《China Foundry》 SCIE 2018年第4期253-262,共10页
Cast CrCoNiAIx (x=0-1.2) medium-entropy alloys (MEAs) were produced by arc melting and flip cast to investigate the alloying effect of AI addition on the microstructure, phase constituent and mechanical properties... Cast CrCoNiAIx (x=0-1.2) medium-entropy alloys (MEAs) were produced by arc melting and flip cast to investigate the alloying effect of AI addition on the microstructure, phase constituent and mechanical properties. The crystal structure changes from an initial face-centered cubic (FCC) to duplex FCC and body-centered cubic (BCC) and finally a single BCC with increasing AI content. In the duplex region, FCC and BCC phases form under a eutectic reaction in the interdendrite region. In the single BCC region, the dendrites transform to ordered B2 and disordered A2 BCC phases resulting from spinodal decomposition. Corresponding to their phase constituents, yield strength increases accompanied with an elongation reduction with increasing AI addition. A very interesting phenomenon of very weak ordered FCC (001) spots appearing in AI-0.4 alloy was observed, indicating a local ordering of FCC phase. The changes of fracture surfaces after the tensile deformation are also corresponding to the variations in mechanical properties. 展开更多
关键词 medium-entropy alloy microstructure mechanical properties Al addition
下载PDF
Effect of carbon on microstructure,mechanical properties and wear resistance of non-equiatomic Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) medium-entropy alloys fabricated by powder metallurgy 被引量:2
3
作者 YANG Bao-zhen XIONG Xiang +1 位作者 LIU Ru-tie CHEN Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期1799-1810,共12页
In this study,non-equiatomic Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) medium-entropy alloys(MEAs)with different carbon contents were prepared via mechanical ball-milling,cold pressing and vacuum sintering.The microstruc... In this study,non-equiatomic Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) medium-entropy alloys(MEAs)with different carbon contents were prepared via mechanical ball-milling,cold pressing and vacuum sintering.The microstructural evolution,mechanical properties and wear resistance of the MEAs were investigated.Fe_(70)Co_(7.5)Cr_(7.5)Ni_(7.5)V_(7.5) exhibited a bodycentered cubic(bcc)structure withσphase precipitation.After adding 4 at%and 8 at%carbon,the phase composition of the alloys was transformed to bcc+MC+σand bcc+MC+M_(23)C_(6),respectively.The mechanical properties and wear resistance were observed to be significantly enhanced by the formation of carbides.Increasing the carbon content,the corresponding bending strength and hardness increased from 1520 to 3245 MPa and HRC 57.2 to HRC 61.4,respectively.Further,the dominant wear mechanism changed from the adhesion wear to the abrasion wear.Owing to the evenly distributed carbides and precipitated nanocarbides,Fe_(64.4)Co_(6.9)Cr_(6.9)Ni_(6.9)V_(6.9)C_(8) revealed an extremely low specific wear rate of 1.3×10^(−6) mm_(2)/(N·m)under a load of 10 N. 展开更多
关键词 medium-entropy alloys powder metallurgy CARBIDE wear resistance
下载PDF
Microstructure and mechanical properties of as-cast(CuNi)100-xCox medium-entropy alloys 被引量:1
4
作者 Zhi-yong Yang Wei-ping Chen +4 位作者 Liang-yan Hao Chen-liang Chu Da-hai Zeng Wei Xiong Zhi-qiang Fu 《China Foundry》 SCIE CAS 2022年第6期511-518,共8页
Microstructure and mechanical properties of non-equiatomic(CuNi)_(100-x)Co_(x)(x=15,20,25 and 30,at.%)medium-entropy alloys(MEAs)prepared by vacuum arc-melting were investigated.Results show that all the as-cast MEAs ... Microstructure and mechanical properties of non-equiatomic(CuNi)_(100-x)Co_(x)(x=15,20,25 and 30,at.%)medium-entropy alloys(MEAs)prepared by vacuum arc-melting were investigated.Results show that all the as-cast MEAs exhibit dual face-centered cubic(fcc)solid-solution phases with identical lattice constant,showing typical dendrite structure consisting of(Ni,Co)-rich phase in dendrites and Cu-rich phase in inter-dendrites.The positive enthalpy of mixing among Cu and Ni-Co elements is responsible for the segregation of Cu.With the increase of Co content,the volume fraction of(Ni,Co)-rich phase increases while the Cu-rich phase decreases,resulting in an increment of yield strength and a decrement of elongation for the(CuNi)_(100-x)Co_(x) MEAs.Nano-indentation test results show a great difference of microhardness between the two fcc phases of the MEAs.The measured microhardness value of the(Ni,Co)-rich phase is almost twofold as compared to that of the Cu-rich phase in all the(CuNi)_(100-x)Co_(x) MEAs.During the deformation of the MEAs,the Cu-rich phase bears the main plastic strain,whereas the(Ni,Co)-rich phase provides more pronounced strengthening. 展开更多
关键词 medium-entropy alloys microstructure mechanical properties nano-indentation
下载PDF
Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
5
作者 Lin Lang Huiqiu Deng +3 位作者 Jiayou Tao Tengfei Yang Yeping Lin Wangyu Hu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第12期365-373,共9页
High-entropy alloys(HEAs)and medium-entropy alloys(MEAs)have attracted a great deal of attention for developing nuclear materials because of their excellent irradiation tolerance.Herein,formation and evolution of radi... High-entropy alloys(HEAs)and medium-entropy alloys(MEAs)have attracted a great deal of attention for developing nuclear materials because of their excellent irradiation tolerance.Herein,formation and evolution of radiation-induced defects in Ni Co Fe MEA and pure Ni are investigated and compared using molecular dynamics simulation.It is observed that the defect recombination rate of ternary Ni Co Fe MEA is higher than that of pure Ni,which is mainly because,in the process of cascade collision,the energy dissipated through atom displacement decreases with increasing the chemical disorder.Consequently,the heat peak phase lasts longer,and the recombination time of the radiation defects(interstitial atoms and vacancies)is likewise longer,with fewer deleterious defects.Moreover,by studying the formation and evolution of dislocation loops in Ni-Co-Fe alloys and Ni,it is found that the stacking fault energy in Ni-Co-Fe decreases as the elemental composition increases,facilitating the formation of ideal stacking fault tetrahedron structures.Hence,these findings shed new light on studying the formation and evolution of radiation-induced defects in MEAs. 展开更多
关键词 medium-entropy alloy molecular dynamics simulations radiation-induced defects stacking fault energy
下载PDF
Effects of Si Addition on Microstructure,Properties and Serration Behaviors of Lightweight Al-Mg-Zn-Cu Medium-entropy Alloys 被引量:3
6
作者 Yasong Li Ruixuan Li Yong Zhang 《Research and Application of Materials Science》 2019年第1期10-17,共8页
A series of as-cast lightweight multicomponent alloys Al(86-x)Mg10Zn2Cu2Six(x=0,0.3,0.6,0.9,1.2 at.%)were prepared by a vacuum induction furnace with a steel die.With the addition of Si,the reticular white Al-Cu phase... A series of as-cast lightweight multicomponent alloys Al(86-x)Mg10Zn2Cu2Six(x=0,0.3,0.6,0.9,1.2 at.%)were prepared by a vacuum induction furnace with a steel die.With the addition of Si,the reticular white Al-Cu phase deposited were gradually replaced by the gray eutectic Mg-Si phase,while the compressive strength of the alloys increases first and then decreases slowly.It is particularly noteworthy that the compression plasticity also exhibits this trend.When the Si content is 0.9 at.%,the compressive strength reaches its maximum at 779.11 MPa and the compressive plasticity reaches 20.91%.The effect of the addition of Si on the serration behavior of alloy was also studied;we found that the addition of Si introduces a new MgSi phase,and with the change of Si is significantly affects the morphology of the precipitated phase,which affects the serration behavior of the alloys.The comprehensive mechanical properties of the alloy are optimal at the critical point where the serration behavior disappears.In this work,we have provided a method and a composition for the preparation of a low-cost,high-strength,lightweight medium-entropy alloys. 展开更多
关键词 Si ADDITION Microstructure and Properties SERRATION Behavior Lightweight medium-entropy alloyS
下载PDF
Enhancing Strength-Ductility Synergy of CoCrNi-Based Medium-Entropy Alloy Through Coherent L1_(2)Nanoprecipitates and Grain Boundary Precipitates
7
作者 Leilei Li Kaikai Song +5 位作者 Qingwei Gao Changshan Zhou Xiaoming Liu Yaocen Wang Xiaojun Bai Chongde Cao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第1期78-88,共11页
The L1_(2)-strengthened Co_(34)Cr_(32)Ni_(27)Al_(4)Ti_(3)medium-entropy alloy(MEA)with precipitations of grain boundaries has been developed through selective laser melting(SLM)followed by cold rolling and annealing,e... The L1_(2)-strengthened Co_(34)Cr_(32)Ni_(27)Al_(4)Ti_(3)medium-entropy alloy(MEA)with precipitations of grain boundaries has been developed through selective laser melting(SLM)followed by cold rolling and annealing,exhibiting excellent strength-ductility synergy.The as-printed alloy exhibits low yield strength(YS)of~384 MPa,ultimate tensile strength(UTS)of~453 MPa,and uniform elongation(UE)of 1.5%due to the existence of the SLM-induced defects.After cold rolling and annealing,the YS,UTS,and UE are significantly increased to~739 MPa,~1230 MPa,and~47%,respectively.This enhancement primarily originates from the refined grain structure induced by cold rolling and annealing.The presence of coherent sphericalγ'precipitates(L1_(2)phases)and Al/Ti-rich precipitates at the grain boundaries,coupled with increased lattice defects such as dislocations,stacking faults,and ultrafine deformation twins,further contribute to the property’s improvement.Our study highlights the potential of SLM in producing high-strength and ductile MEA with coherent L1_(2)nanoprecipitates,which can be further optimized through subsequent rolling and annealing processes.These findings offer valuable insights for the development of high-performance alloys for future engineering applications. 展开更多
关键词 medium-entropy alloy Selective laser melting Precipitation STRENGTH DUCTILITY
原文传递
Achieving strength-ductility synergy in novel paramagnetic Fe-based medium-entropy alloys through deep cryogenic deformation
8
作者 Hu-Wen Ma Yan-Chun Zhao +6 位作者 Li Feng Tian-Zeng Liu Zhi-Qi Yu Bo Jin Wang-Chun Duan Peter K.Liaw Dong Ma 《Rare Metals》 SCIE EI CAS CSCD 2024年第9期4493-4507,共15页
Cryogenic pre-deformation treatment has been widely used to effectively improve the comprehensive mechanical properties of steels and novel metals.However,the dislocation evolution and phase transformation induced by ... Cryogenic pre-deformation treatment has been widely used to effectively improve the comprehensive mechanical properties of steels and novel metals.However,the dislocation evolution and phase transformation induced by different degrees of deep cryogenic deformation are not yet fully elucidated.In this study,the effects of multiple cryogenic pre-treatments on the mechanical properties and deformation mechanisms of a paramagnetic Fe_(63.3)Mn_(14-)Si_(9.1)Cr_(9.8)C_(3.8)medium-entropy alloy(MEA)were investigated,leading to the discovery of a pretreated MEA that exhibits exceptional mechanical properties,including a fracture strength of 3.0 GPa,plastic strain of 26.1%and work-hardening index of 0.57.In addition,X-ray diffraction(XRD)and transmission electron microscopy(TEM)analyses revealed that multiple cryogenic pre-deformation treatments significantly increased the dislocation density of the MEA(from 9×10^(15)to 4×10^(16)m^(-2)after three pretreatments),along with a transition in the dislocation type from predominantly edge dislocations to mixed dislocations(including screw-and edge-type dislocations).Notably,this pretreated MEA retained its paramagnetic properties(μ_(r)<1.0200)even after fracture.Thermodynamic calculations showed that cryogenic pretreatment can significantly reduce the stacking fault energy of the MEA by a factor of approximately four(i.e.,from 9.7 to2.6 m J·m^(-2)),thereby activating the synergistic effects of transformation-induced plasticity,twinning-induced plasticity and dislocation strengthening mechanisms.These synergistic effects lead to simultaneous strength and ductility enhancement of the MEA. 展开更多
关键词 Deep cryogenic transformation Iron-based medium-entropy alloys Dislocation evolution Phase transformation Stacking fault energy
原文传递
Prediction of chemical short-range order in high-/medium-entropy alloys 被引量:1
9
作者 Pei-Yu Cao Jing Wang +3 位作者 Ping Jiang Yun-Jiang Wang Fu-Ping Yuan Xiao-Lei Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第2期115-123,共9页
Chemical short-range orders(CSROs),as the built-in sub-nanoscale entities in a high-/medium-entropy alloy(H/MEA),have aroused an ever-increasing interest.With multi-principal elements in an H/MEA to form a complex con... Chemical short-range orders(CSROs),as the built-in sub-nanoscale entities in a high-/medium-entropy alloy(H/MEA),have aroused an ever-increasing interest.With multi-principal elements in an H/MEA to form a complex concentrated solution,a variety of sub-systems of species exist to induce the metastable ordered compounds as candidates for ultimate CSROs.The issues remain pending on the origin of CSROs as to how to judge if CSRO will form in an H/MEA and particularly,what kind of CSROs would be stably produced if there were multiple possibilities.Here,the first-principles method,along with the proposed local formation energy calculation in allusion to the atomic-scale chemical heterogeneities,is used to predict the CSRO formation based on the mechanical stability,thermodynamic formation energy,and electronic characteristics.The simulations are detailed in an equiatomic ternary VCoNi MEA with three kinds of potential compounds,i.e.,L1_(1),L1_(2),and B2,in the face-centered cubic matrix.It turns out that L1_(1)is stable but hard to grow up so as to become the final CSRO.L1_(1)is further predicted as CSROs in CrCoNi,but unable to form in FeCoNi and CrMnFeCoNi alloys.These predictions are consistent with the experimental observations.Our findings shed light on understanding the formation of CSROs.This method is applicable to other H/MEAs to design and tailor CSROs by tuning chemical species/contents and thermal processing for high performance. 展开更多
关键词 Short-range order High-entropy alloy Microstructure First-principles calculation Gibbs free energy Local electronic density of states
原文传递
A strong and ductile NiCoCr-based medium-entropy alloy strengthened by coherent nanoparticles with superb thermal-stability 被引量:4
10
作者 D.D.Zhang J.Kuang +3 位作者 H.Xue J.Y.Zhang G.Liu J.Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第1期201-212,共12页
In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the c... In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the coarsening kinetics of the coherent precipitates were systematically investigated.The results indicated that giant precipitation hardening and its synergy with other strengthening contributors confer on the aged material a yield strength as high as 1.0 GPa.Moreover,a unique particle-features-dependent plasticity mechanism was revealed in this alloy.That is,the alloy with a lower volume frac-tion,denser distribution,and finer particles mainly deformed by dislocation planar slip,otherwise,stack-faults-mediated plasticity was favored,rationalized by the cooperative/competitive effect of stack-fault energy,spatial confinement,and applied stress.Furthermore,the coarsening behavior of precipitate fol-lowed a modified Lifshitz-Slyozov-Wagner(LSW)model,and the nanoparticles displayed remarkably su-perior thermal stability compared to most traditional superalloys and reported multicomponent alloys.The superb coarsening resistance of precipitate originated from the coupled effect of intrinsic sluggish diffusion in multi-principal alloys and the dual-roles of Ta species as a precipitate stabilizer.This work provides a new pathway to develop strong-yet-ductile multicomponent alloys as promising candidates for high-temperature applications. 展开更多
关键词 medium-entropy alloy Mechanical properties Precipitation hardening Deformation mechanisms Coarsening kinetics
原文传递
Chemical short-range orders in high-/medium-entropy alloys 被引量:3
11
作者 Xiaolei Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第16期189-196,共8页
High(or medium)-entropy alloys(H/MEAs)are complex concentrated solid solutions prone to develop the chemical short-range orders(CSROs),as an indispensable structural constituent to make H/MEAs essentially different fr... High(or medium)-entropy alloys(H/MEAs)are complex concentrated solid solutions prone to develop the chemical short-range orders(CSROs),as an indispensable structural constituent to make H/MEAs essentially different from the traditional alloys.The CSROs are predicted to play roles in dislocation behaviors and mechanical properties.So far,the image of CSROs is built up by the theoretical modeling and computational simulations in terms of the conventional concept,i.e.,the preference/avoidance of elemental species to satisfy the short-ranged ordering in the first and the next couple of nearest-neighbor atomic shells.In these simulated CSROs,however,the structural image is missing on the atomic scale,even though the lattice periodicity does not exist in the CSROs.Further,it is pending as to the issues if and what kind of CSRO may be formed in a specific H/MEA.All these are ascribed to the challenge of experimentally seeing the CSROs.Until recently,the breakthrough does not appear to convincingly identify the CSROs in the H/MEAs by using the state-of-the-art transmission electron microscope.To be specific,the electron diffractions provide solid evidence to doubtlessly ascertain CSROs.The structure motif of CSROs is then constructed,showing both the lattice structure and species ordering occupation,along with the stereoscopic topography of the CSRO.It is suggested that the CSROs,as the first landscape along the path of development of the local chemical ordering,offer one more route to substantially develop the ordered structure on the atomic scale in the H/MEAs,parallel to the existing grain-leveled microstructure.The findings of CSROs make a step forward to understand the CSROs-oriented relationship between the microstructure and mechanical properties.This review focuses on the recent progress mainly in the experimental aspects of the identification,structure motif,and mechanical stability in CSROs,along with the chemical medium-range orders as the growing CSROs。 展开更多
关键词 Chemical short-range order Electron diffraction Transmission electron microscopy Structure motif Chemical medium-range order High-/medium-entropy alloys
原文传递
Ultrastrong and ductile(CoCrNi)_(94)Ti_(3)Al_(3)medium-entropy alloys via introducing multi-scale heterogeneous structures 被引量:2
12
作者 Jianying Wang Jianpeng Zou +5 位作者 Hailin Yang Xixi Dong Peng Cao Xiaozhou Liao Zhilin Liu Shouxun Ji 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第4期241-249,共9页
The coarsening-grained single-phase face-centered cubic(fcc)medium-entropy alloys(MEAs)normally exhibit insufficient strength for some engineering applications.Here,superior mechanical properties with ultimate tensile... The coarsening-grained single-phase face-centered cubic(fcc)medium-entropy alloys(MEAs)normally exhibit insufficient strength for some engineering applications.Here,superior mechanical properties with ultimate tensile strength of 1.6 GPa and fracture strain of 13.1%at ambient temperature have been achieved in a(CoCrNi)_(94)Ti_(3)Al_(3)MEA by carefully architecting the multi-scale heterogeneous structures.Electron microscopy characterization indicates that the superior mechanical properties mainly originated from the favorable heterogeneous fcc matrix(1-40μm)and the coherent sphericalγ’precipitates(10-100 nm),together with a high number density of crystalline defects(2-10 nm),including dislocations,small stacking faults,Lomer-Cottrell locks,and ultrafine deformation twins. 展开更多
关键词 medium-entropy alloys Mechanical properties Heterogeneous structure γ’nanoprecipitates Crystalline defects
原文传递
A novel cobalt-free oxide dispersion strengthened medium-entropy alloy with outstanding mechanical properties and irradiation resistance 被引量:1
13
作者 Ao Fu Bin Liu +7 位作者 Bo Liu Yuankui Cao Jian Wang Tao Liao Jia Li Qihong Fang Peter K.Liaw Yong Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第21期190-200,共11页
A novel cobalt-free oxide dispersion strengthened(ODS)equiatomic FeCrNi medium entropy alloy(MEA)was successfully fabricated through mechanical alloying and hot extrusion(HE).The ODS FeCrNi MEA is composed of a single... A novel cobalt-free oxide dispersion strengthened(ODS)equiatomic FeCrNi medium entropy alloy(MEA)was successfully fabricated through mechanical alloying and hot extrusion(HE).The ODS FeCrNi MEA is composed of a single face-centered cubic(FCC)matrix,in which highly dispersed oxide nanoparticles,including Y_(2)Ti_(2)O_(7),Y_(2)TiO_(5) and Y_(2)O_(3),are uniformly distributed.Compared with the FeCrNi MEA,the ODS FeCrNi MEA exhibits the improved yield strength(1120 MPa)and ultimate tensile strength(1274 MPa)with adequate ductility retention(12.1%).Theoretical analysis of the strengthening mechanism indicates that the high strength is mainly attributed to the grain-boundary strengthening caused by fine grains and the precipitation strengthening resulted from the oxide nanoparticles.Meanwhile,the matrix that easily activates mechanical twinning during the deformation process is the main reason to ensure moderate ductility.In addition,the introduction of high-density oxide nanoparticles can disperse the defect distri-bution and suppress the defect growth and irradiation-induced segregation,leading to the excellent irra-diation resistance.These findings provide innovative guidance for the development of high-performance structural materials for future nuclear energy applications with balanced strength and ductility. 展开更多
关键词 medium-entropy alloys IRRADIATION Oxide nanoparticles Strength Deformation mechanism
原文传递
Effects of post annealing on the microstructure,precipitation behavior,and mechanical property of a(CoCrNi)_(94)Al_(3)Ti_(3)medium-entropy alloy fabricated by laser powder bed fusion 被引量:1
14
作者 Zhuang Li Pengcheng Zhao +8 位作者 Tiwen Lu Kai Feng Yonggang Tong Binhan Sun Ning Yao Yu Xie Bolun Han Xiancheng Zhang Shantung Tu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第4期142-155,共14页
The additive manufacturing of multi-principal element alloys has remarkable potential for industrial ap-plications.In this study,a(CoCrNi)_(94)Al_(3)Ti_(3)medium-entropy alloy(MEA)with adequate strength-ductility syne... The additive manufacturing of multi-principal element alloys has remarkable potential for industrial ap-plications.In this study,a(CoCrNi)_(94)Al_(3)Ti_(3)medium-entropy alloy(MEA)with adequate strength-ductility synergy was prepared via laser powder bed fusion.The microstructural evolution,mechanical property,and deformation mechanisms of the MEA were investigated after post annealing for a short period(0.5 h)at a temperature range of 773-1373 K using various microstructural characterization techniques and quantitative analysis.The static recrystallization temperature of the(CoCrNi)_(94)Al_(3)Ti_(3)MEA ranged from 973 to 1073 K.The average grain size first decreased and then increased,while the dislocation den-sity persistently decreased and texture gradually weakened with increasing annealing temperature.Cr-richσ-phase precipitates formed after 1073 K and then gradually dissolved at 1373 K,while Ni,Al,and Ti elements were aggregated to form a small amount of fine L1_(2)coherent precipitates with an aver-age diameter of approximately 70 nm at 1373 K.The evolution of the dislocation density,grain size,and precipitates significantly influenced the propensity of deformation twins and stacking faults,which consequently affected the strain hardening behavior and mechanical properties.The quantitative calcu-lation of strengthening mechanisms showed that dislocation strengthening played a dominant role at annealing temperatures below 1073 K,and it significantly weakened at 1373 K.Precipitation and grain boundary strengthening both markedly increased owing to the formation of precipitation particles and recrystallization-induced grain refinement after annealing at 1073 K. 展开更多
关键词 medium-entropy alloy Additive manufacturing Heat treatment Strengthening mechanism Microstructural evolution
原文传递
Extremely strong coupling s-wave superconductivity in the medium-entropy alloy TiHfNbTa 被引量:1
15
作者 Lingyong Zeng Xunwu Hu +8 位作者 Mebrouka Boubeche Kuan Li Longfu Li Peifeng Yu Kangwang Wang Chao Zhang Kui Jin Dao-Xin Yao Huixia Luo 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第7期127-135,共9页
Here we report a TiHfNbTa bulk medium-entropy alloy(MEA)superconductor crystallized in the body-centered cubic structure with the unit cell parameter a=3.35925?,which is synthesized by an arc melting method.Supercondu... Here we report a TiHfNbTa bulk medium-entropy alloy(MEA)superconductor crystallized in the body-centered cubic structure with the unit cell parameter a=3.35925?,which is synthesized by an arc melting method.Superconducting properties of the TiHfNbTa are studied by employing magnetic susceptibility,resistivity,and specific heat measurements.Experimental results show a bulk superconducting transition temperature(Tc)of around 6.75 K.The lower and upper critical fields for TiHfNbTa are45.8 m T and 10.46 T,respectively.First-principles calculations show that the d electrons of Ti,Hf,Nb,and Ta are the main contribution to the total density of states near the Fermi level.Our results indicate that the superconductivity is a conventional swave type with extremely strong coupling(△C_(el)/γ_(n)T_(c)=2.88,2△_(0)/k_(B)T_(c)=5.02,and λ_(ep)=2.77).The extremely strong coupling behavior in the s-wave type Ti Hf Nb Ta MEA superconductor is unusual because it generally happens in cuprates,pnictides,and other unconventional superconductors. 展开更多
关键词 medium-entropy alloy SUPERCONDUCTIVITY s-wave type TiHfNbTa
原文传递
Nanoparticle-strengthened Ni_(2)CoCrNb_(0.2)medium-entropy alloy with an ultrastrong cryogenic yield strength fabricated by additive manufacturing 被引量:1
16
作者 Fangping Wang Yaxiong Guo +1 位作者 Qibin Liu Xiaojuan Shang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第32期17-31,共15页
To improve the yield strength of metallic materials at low temperatures,a strategy of combining the calculation of phase diagrams(CALPHAD)technique with the overall valence electron concentration(OVEC)principle is app... To improve the yield strength of metallic materials at low temperatures,a strategy of combining the calculation of phase diagrams(CALPHAD)technique with the overall valence electron concentration(OVEC)principle is applied,and a Ni_(2)CoCrNb_(0.2)medium-entropy alloy(MEA)with D022 superlattice(noted as theγ″phase)is designed.Bulk MEA samples without defects were successfully fabricated using laser additive manufacturing(AM),followed by solution treatment at 1200℃for 1 h and then aging at 650℃for 120 h.The nanoscaleγ″phase precipitated.The tensile results indicated that the MEA had superior yield strengths of∼1180 MPa and∼1320 MPa and tensile strengths of∼1335 MPa and∼1552 MPa at 293 K and 77 K,respectively.The yield strength obtained was superior to that of currently reported medium/high-entropy alloys and typical advanced cryogenic steel.The mechanical properties of the Ni_(2)CoCrNb_(0.2)MEA demonstrated a strong temperature dependence,and the increased yield strength was mainly attributed to the increase in lattice friction stress at low temperatures.This research provides a new strategy for producing materials with ultrastrong cryogenic yield strengths by AM. 展开更多
关键词 Additive manufacturing medium-entropy alloys D0_(22)superlattice Temperature dependence Cryogenic performance
原文传递
Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys
17
作者 J.X.Yan Z.J.Zhang +5 位作者 P.Zhang J.H.Liu H.Yu Q.M.Hu J.B.Yang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第8期232-244,共13页
The development of multi-principal element alloys(MPEAs,also called as high-or medium-entropy al-loys,HEAs/MEAs)provides tremendous possibilities for materials innovation.However,designing MPEAs with desirable mechani... The development of multi-principal element alloys(MPEAs,also called as high-or medium-entropy al-loys,HEAs/MEAs)provides tremendous possibilities for materials innovation.However,designing MPEAs with desirable mechanical properties confronts great challenges due to their vast composition space.In this work,we provide an essential criterion to efficiently screen the CoCrNi MEAs with outstanding strength-ductility combinations.The negative Gibbs free energy difference△E_(FCC-BCC)between the face-centered cubic(FCC)and body-centered cubic(BCC)phases,the enhancement of shear modulus G and the decline of stacking fault energy(SFE)γ_(isf)are combined as three requisites to improve the FCC phase stability,yield strength,deformation mechanisms,work-hardening ability and ductility in the criterion.The effects of chemical composition on△E_(FCC-BCC),G andγisf were investigated with the first principles calculations for Co_(x)Cr_(33)Ni_(67-x),Co_(33)Cr_(y)Ni_(67-y)and Co_(z)Cr_(66-z)Ni_(34)(0≤x,y≤67 and 0≤z≤66)alloys.Based on the essential criterion and the calculation results,the composition space that displays the neg-ative Gibbs free energy difference△E_(FCC-BCC),highest shear modulus G and lowest SFEγ_(isf)was screened with the target on the combination of high strength and excellent ductility.In this context,the optimal composition space of Co-Cr-Ni alloys was predicted as 60 at.%-67 at.%Co,30 at.%-35 at.%Cr and 0 at.%-6 at.%Ni,which coincides well with the previous experimental evidence for Co_(55)Cr_(40)Ni_(5)alloys.The valid-ity of essential criterion is further proved after systematic comparison with numerous experimental data,which demonstrates that the essential criterion can provide significant guidance for the quick exploitation of strong and ductile MEAs and promote the development and application of MPEAs. 展开更多
关键词 medium-entropy alloys First-principles calculations Phase stability Stacking-fault energy Strength DUCTILITY
原文传递
Strengthening and toughening bulk Ni_(2)CoFeV_(0.5) medium-entropy alloy via thermo-mechanical treatment
18
作者 Lei Gu Rui Hou +5 位作者 Yi Liu Guang Chen Jihua Liu Gong Zheng Ruisheng Zhang Yonghao Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第20期19-29,共11页
Single-phase face-centered cubic(fcc)medium-and high-entropy alloys(MEAs/HEAs)have high ductility but low yield strength.In this work,the microstructures of single-phase fcc Ni_(2)CoFeV_(0.5) MEAs were tailored by col... Single-phase face-centered cubic(fcc)medium-and high-entropy alloys(MEAs/HEAs)have high ductility but low yield strength.In this work,the microstructures of single-phase fcc Ni_(2)CoFeV_(0.5) MEAs were tailored by cold-rolling and subsequent annealing and typical heterogeneous lamella(HL)structures composed of recrystallized micro-grain lamellae(with an averaged grain size of∼4μm)and nonrecrystallized nano-/ultrafine-grain lamellae were obtained.Tensile tests revealed that most HL samples exhibited excellent strength and ductility synergy.The HL sample with∼23 vol%recrystallized grains annealed at 590℃ for 1 h had a high yield strength of 1120 MPa and a good fracture elongation of 12.3%,which increased by 5%and 46%,respectively compared with those of as-rolled sample.Annealing-induced yield strength increase is attributed to high-density annealing twin boundaries(TBs)in the recrystallized grains,the annihilation of mobile dislocations inside the non-recrystallized grains,and extra heterodeformation-induced strengthening produced by the HL structure.Hall-Petch relationship of Ni_(2)CoFeV_(0.5) MEA can be reasonably described by counting both TBs and grain boundaries,with lattice friction stress of 87.3 MPa and coefficient of 722.8 MPaμm1/2.Our work provides optional and controllable solutions for preparing MEAs/HEAs with excellent mechanical properties by low-cost and high-efficiency thermomechanical treatments. 展开更多
关键词 medium-entropy alloys MICROSTRUCTURES Strength and ductility Heterogeneous lamella structure COLD-ROLLING Annealing
原文传递
Increased Oxygen Evolution Activity in pH-Universal Electrocatalyst: Urea-Modified NiFeCoCN Medium-Entropy Alloy
19
作者 Hongwei Lv Zhiguo Ye +4 位作者 Feng Pei Xinyuan Peng Juntong Huang Duosheng Li Zhong Jin 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第23期3290-3298,共9页
The kinetic process of a slow oxygen evolution reaction (OER) always constrains the efficiency of overall water electrolysis for H2 production.In particular,nonprecious metal electrodes for the OER have difficulty in ... The kinetic process of a slow oxygen evolution reaction (OER) always constrains the efficiency of overall water electrolysis for H2 production.In particular,nonprecious metal electrodes for the OER have difficulty in possessing excellent electrocatalytic activity and stability in pH-universal media simultaneously.In this work,urea is first used as a pore-forming agent and active C/N source to fabricate a nanoporous NiFeCoCN medium-entropy alloy (MEA) by high-temperature sintering based on the nanoscale Kirkendall effect.The NiFeCoCN MEA achieves an overpotential of 432 mV at a current density of 10 mA·cm^(-2) and a lower Tafel slope of 52.4 mV·dec^(-1) compared to the IrO_(2)/Ti electrode (58.6 mV·dec^(-1)) in a 0.5 mol/L H_(2)SO_(4) solution.In a 1 mol/L KOH solution,the NiFeCoCN MEA obtains an overpotential of 175 mV for 10 mA·cm^(-2) and a Tafel slope of 40.8 mV·dec^(-1),which is better than IrO_(2)/Ni foam.This work proves a novel strategy to design and prepare nanoporous MEA materials with desirable C/N species,which provides promising prospects for the industrial production of H2 energy. 展开更多
关键词 Oxygen evolution reaction medium-entropy alloy UREA Electrocatalytic activity Stability
原文传递
Microstructure Evolution and Tensile Properties of the Alx(CoCrNi)100-x Medium-Entropy Alloys
20
作者 Ji-Peng Zou Xue-Mei Luo +5 位作者 Bin Zhang Guo-Dong Liu Hong-Lei Chen Xiao-Fei Zhu Wen-Ke Yang Guang-Ping Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第12期2045-2057,共13页
A series of Alx(CoCrNi)100-x(x=0-21 at.%)medium-entropy alloys(MEAs)were designed and prepared to investigate the effects of Al addition on the microstructures and tensile properties.The results reveal that the lattic... A series of Alx(CoCrNi)100-x(x=0-21 at.%)medium-entropy alloys(MEAs)were designed and prepared to investigate the effects of Al addition on the microstructures and tensile properties.The results reveal that the lattice structure changes from the initial single FCC structure(x<10 at.%),to the FCC and disordered BCC structures(x=10 and 11 at.%),then to the FCC and BCC/B2 structures(11<x<21 at.%),finally to the duplex BCC/B2 structures(x≥21 at.%)with increasing Al addition.Consistent with microstructures,significant changes also occur in the corresponding tensile properties with Al addition,showing that the strength increases and the ductility decreases with increasing Al addition.Especially,the Al-15 MEA exhibits an acceptable balance of strength and ductility.Furthermore,the mechanism of microstructure evolution and the correlation between microstructures and tensile properties were also discussed and clarified. 展开更多
关键词 medium-entropy alloys MICROSTRUCTURES Tensile properties Strengthening mechanisms
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部