SeisGuard, a system for analyzing earthquake precursory data, is a software platform to search for earthquake precursory information by processing geophysical data from different sources to establish automatically an ...SeisGuard, a system for analyzing earthquake precursory data, is a software platform to search for earthquake precursory information by processing geophysical data from different sources to establish automatically an earthquake forecasting model. The main function of this system is to analyze and process the deformation, fluid, electromagnetic and other geophysical field observing data from ground-based observation, as well as space-based observation. Combined station and earthquake distributions, geological structure and other information, this system can provide a basic software platform for earthquake forecasting research based on spatiotemporal fusion. The hierarchical station tree for data sifting and the interaction mode have been innovatively developed in this SeisGuard system to improve users’ working efficiency. The data storage framework designed according to the characteristics of different time series can unify the interfaces of different data sources, provide the support of data flow, simplify the management and usage of data, and provide foundation for analysis of big data. The final aim of this development is to establish an effective earthquake forecasting model combined all available information from ground-based observations to space-based observations.展开更多
We are living in a world of numbers and calculations with enormous amount of pretty fast user-friendly software ready for an automatic output that may lead to a discovery or,alternatively,mislead to a deceptive conclu...We are living in a world of numbers and calculations with enormous amount of pretty fast user-friendly software ready for an automatic output that may lead to a discovery or,alternatively,mislead to a deceptive conclusion,erroneous claims and predictions.As a matter of fact,nowadays,Science can disclose Natural Hazards,assess Risks,and deliver the state-of-the-art Knowledge of looming disaster in advance catastrophes along with useful Recommendations on the level of risks for decision making regarding engineering design,insurance,and emergency management.展开更多
Since the inaugural international collaboration under the framework of the Collaboratory for the Study of Earthquake Predictability(CSEP)in 2007,numerous forecast models have been developed and operated for earthquake...Since the inaugural international collaboration under the framework of the Collaboratory for the Study of Earthquake Predictability(CSEP)in 2007,numerous forecast models have been developed and operated for earthquake forecasting experiments across CSEP testing centers(Schorlemmer et al.,2018).Over more than a decade,efforts to compare forecasts with observed earthquakes using numerous statistical test methods and insights into earthquake predictability,which have become a highlight of the CSEP platform.展开更多
Among electromagnetic methods of short-term earthquake prediction,an approach is being actively developed based on the phenomenon of magnetic ultra-low-frequency(ULF)power depression occurring a few days before an ear...Among electromagnetic methods of short-term earthquake prediction,an approach is being actively developed based on the phenomenon of magnetic ultra-low-frequency(ULF)power depression occurring a few days before an earthquake.In particular,a nighttime geomagnetic power depression in the band 0.03-0.05 Hz was observed approximately 5 days before the catastrophic Tohoku 2011 earthquake.To verify the reliability of this method,we performed an extended analysis using data from magnetometer arrays JMA,MAGDAS,PWING,and INTERMAGNET.The selected stations included sites close to the epicenter(<300 km)and remote points(~10000 km).The band-integrated spectral power of nighttime magnetic noise decreased significantly from March 6-9,several days before the earthquake.However,such variations occur simultaneously not only at nearby stations but also at distant stations.During this event,the ULF power depression was caused by low global geomagnetic activity,as evidenced by the planetary index SME.Thus,the depression of geomagnetic ULF noise cannot be considered a reliable short-term precursor.展开更多
In 2022,four earthquakes with M_(S)≥6.0 including the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes occurred in the North-South Seismic Zone(NSSZ),which demonstrated high and strong seismicity.Pattern Informatics(...In 2022,four earthquakes with M_(S)≥6.0 including the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes occurred in the North-South Seismic Zone(NSSZ),which demonstrated high and strong seismicity.Pattern Informatics(PI)method,as an effective long and medium term earthquake forecasting method,has been applied to the strong earthquake forecasting in Chinese mainland and results have shown the positive performance.The earthquake catalog with magnitude above M_(S)3.0 since 1970 provided by China Earthquake Networks Center was employed in this study and the Receiver Operating Characteristic(ROC)method was applied to test the forecasting efficiency of the PI method in each selected region related to the North-South Seismic Zone systematically.Based on this,we selected the area with the best ROC testing result and analyzed the evolution process of the PI hotspot map reflecting the small seismic activity pattern prior to the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes.A“forward”forecast for the area was carried out to assess seismic risk.The study shows the following.1)PI forecasting has higher forecasting efficiency in the selected study region where the difference of seismicity in any place of the region is smaller.2)In areas with smaller differences of seismicity,the activity pattern of small earthquakes prior to the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes can be obtained by analyzing the spatio-temporal evolution process of the PI hotspot map.3)The hotspot evolution in and around the southern Tazang fault in the study area is similar to that prior to the strong earthquakes,which suggests the possible seismic hazard in the future.This study could provide some ideas to the seismic hazard assessment in other regions with high seismicity,such as Japan,Californi,Turkey,and Indonesia.展开更多
In the new types of industrial activities including unconventional energy extraction associated with shale gas and hot dry rock,gas reservoir operations,CO2 geological storage,undergoing research on induced earthquake...In the new types of industrial activities including unconventional energy extraction associated with shale gas and hot dry rock,gas reservoir operations,CO2 geological storage,undergoing research on induced earthquake forecasting has become one of the forward positions of current seismology.As for the intense actual demand,the immature research on induced earthquake forecasting has already been applied in pre-assessment of site safety and seismic hazard and risk management.This work will review systematically recent advances in earthquake forecasting induced by hydraulic fracturing during industrial production from four aspects:earthquake occurrence probability,maximum expected magnitude forecasting,seismic risk analysis for engineering and social applications and key scientific problems.In terms of earthquake occurrence probability,we introduce statistical forecasting models such as an improved ETAS and non-stationary ETAS and physical forecasting models such as Seismogenic Index(SI)and hydro-mechanism nucleation.Research on maximum expected magnitude forecasting has experienced four stages of linear relationship with net injection volume of fluid,power exponential relationship and physical forecasting regarding fault parameters.For seismic risk analysis,we focus on probabilistic seismic hazard assessment and quantitative geological susceptibility model.Furthermore,this review is extended to key scientific problems that contain obtaining accurate fault scale and environmental stress state of reservoir,critical physical process of runaway rupture,complex mechanism of fault activation as well as physical mechanism and modeling of trailing effect.This work in understanding induced earthquake forecasting may contribute to unconventional energy development and production,seismic hazard mitigation,emergency management and scientific research as a reference.展开更多
Evaluation of numerical earthquake forecasting models needs to consider two issues of equal importance:the application scenario of the simulation,and the complexity of the model.Criterion of the evaluation-based model...Evaluation of numerical earthquake forecasting models needs to consider two issues of equal importance:the application scenario of the simulation,and the complexity of the model.Criterion of the evaluation-based model selection faces some interesting problems in need of discussion.展开更多
Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR), used for monitoring crust deformation, are found to be very promising in earthquake prediction subject to stress-forecasting. H...Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR), used for monitoring crust deformation, are found to be very promising in earthquake prediction subject to stress-forecasting. However, it is recognized that unless we can give reasonable explanations of these curious precursory phenomena that continue to be serendipitously observed from time to time, such high technology of GPS or InSAR is difficult to be efficiently used. Therefore, a proper model revealing the relation between earthquake evolution and stress variation, such as the phenomena of stress buildup, stress shadow and stress transfer (SSS), is crucial to the GPS or InSAR based earthquake prediction. Here we address this question through a numerical approach of earthquake development using an intuitive physical model with a map-like configuration of discontinuous fault system. The simulation provides a physical basis for the principle of stress-forecasting of earthquakes based on SSS and for the application of GPS or InSAR in earthquake prediction. The observed SSS associated phenomena with images of stress distribution during the failure process can be continuously simulated. It is shown that the SSS are better indicators of earthquake precursors than that of seismic foreshocks, suggesting a predictability of earthquakes based on stress-forecasting strategy.展开更多
According to complexity and multiplicity of the post-earthquake fire, the loss forecasting model of earthquake fire is established by using radial basis function neural network with adaptability, self-learning and fau...According to complexity and multiplicity of the post-earthquake fire, the loss forecasting model of earthquake fire is established by using radial basis function neural network with adaptability, self-learning and fault-tolerant based on the historical information. The applicability and validity of the model is manifested through testing and discussion. A simple and available method is provided for the prediction of losses of other natural disaster.展开更多
In this paper,the research progress of the Operational Earthquake Forecasting( OEF) is introduced from the major areas of concern,the concept of probability gain,hybrid model development,and the application to earthqu...In this paper,the research progress of the Operational Earthquake Forecasting( OEF) is introduced from the major areas of concern,the concept of probability gain,hybrid model development,and the application to earthquake disaster reduction. Due to the development of OEF based on the global "Collaboratory for the Study of Earthquake Predictability( CSEP) " plan,it provides a significant technical foundation for earthquake forecast modeling and a practical foundation for solving the actual problems in earthquake preparedness and disaster mitigation. Therefore, related research and technical ideas provide inspirational and referential significance for earthquake forecasting/prediction.展开更多
Through analysis of natural and social attributes of earthquake forecasting,the relationship between the natural and social attributes of earthquake forecasting(early warning)has been discussed.Regarding the natural a...Through analysis of natural and social attributes of earthquake forecasting,the relationship between the natural and social attributes of earthquake forecasting(early warning)has been discussed.Regarding the natural attributes of earthquake forecasting,it only attempts to forecast the magnitude,location and occurrence time of future earthquake based on the analysis of observational data and relevant theories and taking into consideration the present understanding of seismogeny and earthquake generation.It need not consider the consequences an earthquake forecast involves,and its purpose is to check out the level of scientific understanding of earthquakes.In respect of the social aspect of earthquake forecasting,people also focus on the consequence that the forecasting involves,in addition to its natural aspect,such as the uncertainty of earthquake prediction itself,the impact of earthquake prediction,and the earthquake resistant capability of structures(buildings),lifeline works,etc.In a word,it highlights the risk of earthquake forecasting and tries to mitigate the earthquake hazard as much as possible.In this paper,the authors also discuss the scientific and social challenges faced in earthquake prediction and analyze preliminarily the meanings and content of earthquake early warning.展开更多
The diurnal variation of the geomagnetic vertical component is exhibited mainly by changes of phase and amplitude before strong earthquakes. Based on data recorded by the network of geomagnetic observatories in China ...The diurnal variation of the geomagnetic vertical component is exhibited mainly by changes of phase and amplitude before strong earthquakes. Based on data recorded by the network of geomagnetic observatories in China for many years, the anomalous features of the appearance time of the minima of diurnal variations (i.e, low-point time) of the geo- magnetic vertical components and the variation of their spatial distribution (i.e, phenomena of low-point displacement) have been studied before the Wenchuan Ms8.0 earthquake. The strong aftershocks after two months' quiescence of M6 aftershocks of the Ms8.0 event were forecasted based on these studies. There are good correlativities between these geomagnetic anoma- lies and occurrences of earthquakes. It has been found that most earthquakes occur near the boundary line of sudden changes of the low-point time and generally within four days before or after the 27th or 41st day counting from the day of the appearance of the anomaly. In addition, the imminent anomalies in diurnal-variation amplitudes near the epicentral areas have also been studied before the Wenchuan earthquake.展开更多
Calculation by means of the previous indices of the seismic activity can have the matter element analysis possess the forecast function. Readjusting repeatedly the grade limit value of every index can maximize the his...Calculation by means of the previous indices of the seismic activity can have the matter element analysis possess the forecast function. Readjusting repeatedly the grade limit value of every index can maximize the historical fitting ratio of the calculated and actual grade of the annual maximum magnitude, whose result is relatively ideal.展开更多
The principle of middle and long-term earthquake forecast model of spatial and temporal synthesized probability gain and the evaluation of forecast efficiency (R-values) of various forecast methods are introduced in t...The principle of middle and long-term earthquake forecast model of spatial and temporal synthesized probability gain and the evaluation of forecast efficiency (R-values) of various forecast methods are introduced in this paper. The R-value method, developed by Xu (1989), is further developed here, and can be applied to more complicated cases. Probability gains in spatial and/or temporal domains and the R-values for different forecast methods are estimated in North China. The synthesized probability gain is then estimated as an example.展开更多
Taking the three earthquakes which occurred in Tibet, China during the period of July 12 to August 25, 2004 as an example,the paper analyses the M_S≥6.0 earthquakes that occurred in China and M_S≥7.0 earthquakes tha...Taking the three earthquakes which occurred in Tibet, China during the period of July 12 to August 25, 2004 as an example,the paper analyses the M_S≥6.0 earthquakes that occurred in China and M_S≥7.0 earthquakes that occurred overseas since May of 2003 by combining the image data from the National Center for Environmental Prediction of America(NCEP)with the additive tectonic stress from astro-tidal-triggering (ATSA) and makes the following conclusions: The abnormal temperature image data of NCEP can better reflect the spatial-temporal evolution process of tectonic earthquake activity; The ATSA has an evident triggering effect on the activity of a fault when the terra stress is in critical status; using the NCEP images and the ATSA to forecast short-impending earthquake is a new concept; The three earthquakes occurred during the same phase of the respective ATSA cycle, i.e. that occurred at the time when the ATSA reached the relatively steady end of a peak, rather than at the time when the variation rate was maximal. In addition, the author discovered that the occurrence time of other earthquake cases during 2003~2004 in Tibet was also in the same phase of the above-mentioned cycles, and therefore, further study of this feature is needed with more earthquake cases in other areas over longer periods of time.展开更多
Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose ...Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose a new methodol-ogy that uses hourly daily loads to predict the next year hourly loads, and hence predict the peak loads expected to be reached in the next coming year. The technique is based on implementing multivariable regression on previous year's hourly loads. Three regression models are investigated in this research: the linear, the polynomial, and the exponential power. The proposed models are applied to real loads of the Jordanian power system. Results obtained using the pro-posed methods showed that their performance is close and they outperform results obtained using the widely used ex-ponential regression technique. Moreover, peak load prediction has about 90% accuracy using the proposed method-ology. The methods are generic and simple and can be implemented to hourly loads of any power system. No extra in-formation other than the hourly loads is required.展开更多
The researches on the assessment of earthquake forecast are reviewed, then the R-value assessment is further developed theoretically in the paper. The results include the arithmetic of the R-values of earthquake occur...The researches on the assessment of earthquake forecast are reviewed, then the R-value assessment is further developed theoretically in the paper. The results include the arithmetic of the R-values of earthquake occurrence under the condition that 'anomaly' occurred or no 'anomaly' occurred respectively, and the relation between the values. The distribution of Rvalue of a forecast method, corresponding to multi-status anomalies being independent each other, is also developed in the paper. The appropriate methods to estimate the R-values and extrapolate the occurrence probability of future earthquakes are also given in the paper.展开更多
The ultimate and noble goal of seismology as a science is to find reliable means to predict the place, time and magnitude of expected earthquake. There are significant achievements on the way to this goal: there is a ...The ultimate and noble goal of seismology as a science is to find reliable means to predict the place, time and magnitude of expected earthquake. There are significant achievements on the way to this goal: there is a fairly clear understanding chemical physics and mechanics of the earthquake, there are reliable indicators and precursors of the approaching seismic events. However, this understanding remains to be purely intellectual achievement;it looks like highly desirable but hardly attainable purpose. Earthquake prediction is unattainable like absolute zero temperature: you may approach it, but never reach. As an alternation there is reliable evidence that microwave induced release of energy, accumulated in the earthquake focus, may be implemented by hand-made means (such as magneto-hydrodynamic generators). Magnetic control of the earthquake focus by microwave exposure is a unique means to decrease magnitude of the earthquake and transform catastrophic event in the less dangerous one. However, positive experience of reducing the magnitude of earthquake is rather limited and hardly may be implemented in practice;evidently, earthquake control is unfeasible project.展开更多
By combining conventional grey correlation analysis, grey clustering method and grey forecasting methods with our multi-goal forecast thoughts and the techniques of grey time series processing, we develop six differen...By combining conventional grey correlation analysis, grey clustering method and grey forecasting methods with our multi-goal forecast thoughts and the techniques of grey time series processing, we develop six different grey earthquake forecast models in this paper. Using the record of major earthquakes in Japan from 1872 to 1995, we forecast future earthquakes in Japan. We develop an earthquake forecast model. By using the major earthquakes in Japan from 1872 to 1984, we forecast earthquakes from 1985 to 1995 and check the precision of the grey earthquake models. We find that the grey system theory can be applied to earthquake forecast. We introduce the above analysis methods and give a real example to evaluate and forecast. We also further discuss the problems of how to improve the precision of earthquake forecast and how to strengthen the forecast models in future research.展开更多
Earthquake prediction is considered impossible for there is no scientific way to find the date and time, the location, and the magnitude of an earthquake. A new idea is introduced in this paper—earth rotation harmoni...Earthquake prediction is considered impossible for there is no scientific way to find the date and time, the location, and the magnitude of an earthquake. A new idea is introduced in this paper—earth rotation harmonics triggered natural volcano and earthquake. With earth rotation harmonics response model for a location, it could be possible to calculate the earthquake date and time, and the magnitude. Properties of earth rotation harmonics triggered earthquake are discussed and verified with earthquake data from USGS website. Also, both earth tide and ocean tide effects on earthquake are discussed and verified with earthquake data—tides did not trigger the natural earthquake, they only affect the earthquake activities and time.展开更多
文摘SeisGuard, a system for analyzing earthquake precursory data, is a software platform to search for earthquake precursory information by processing geophysical data from different sources to establish automatically an earthquake forecasting model. The main function of this system is to analyze and process the deformation, fluid, electromagnetic and other geophysical field observing data from ground-based observation, as well as space-based observation. Combined station and earthquake distributions, geological structure and other information, this system can provide a basic software platform for earthquake forecasting research based on spatiotemporal fusion. The hierarchical station tree for data sifting and the interaction mode have been innovatively developed in this SeisGuard system to improve users’ working efficiency. The data storage framework designed according to the characteristics of different time series can unify the interfaces of different data sources, provide the support of data flow, simplify the management and usage of data, and provide foundation for analysis of big data. The final aim of this development is to establish an effective earthquake forecasting model combined all available information from ground-based observations to space-based observations.
基金supported by the Russian Science Foundationproject no.20-17-00180-P“Development of a scenario approach to the tasks of seismic hazard and risk assessment”。
文摘We are living in a world of numbers and calculations with enormous amount of pretty fast user-friendly software ready for an automatic output that may lead to a discovery or,alternatively,mislead to a deceptive conclusion,erroneous claims and predictions.As a matter of fact,nowadays,Science can disclose Natural Hazards,assess Risks,and deliver the state-of-the-art Knowledge of looming disaster in advance catastrophes along with useful Recommendations on the level of risks for decision making regarding engineering design,insurance,and emergency management.
基金granted by the National Natural Science Foundation of China(Grant No.42004038)Earthquake Tracking Orientation Tasks of CEA(Grant No.2024020104)+1 种基金the Special Fund of IEFCEA(Grant No.CEAIEF2022030206)the China Scholarship Council(CSC)exchange program(Grant No.202204190019)。
文摘Since the inaugural international collaboration under the framework of the Collaboratory for the Study of Earthquake Predictability(CSEP)in 2007,numerous forecast models have been developed and operated for earthquake forecasting experiments across CSEP testing centers(Schorlemmer et al.,2018).Over more than a decade,efforts to compare forecasts with observed earthquakes using numerous statistical test methods and insights into earthquake predictability,which have become a highlight of the CSEP platform.
基金supported by Grant 22-17-00125 from the Russian Science Foundation.
文摘Among electromagnetic methods of short-term earthquake prediction,an approach is being actively developed based on the phenomenon of magnetic ultra-low-frequency(ULF)power depression occurring a few days before an earthquake.In particular,a nighttime geomagnetic power depression in the band 0.03-0.05 Hz was observed approximately 5 days before the catastrophic Tohoku 2011 earthquake.To verify the reliability of this method,we performed an extended analysis using data from magnetometer arrays JMA,MAGDAS,PWING,and INTERMAGNET.The selected stations included sites close to the epicenter(<300 km)and remote points(~10000 km).The band-integrated spectral power of nighttime magnetic noise decreased significantly from March 6-9,several days before the earthquake.However,such variations occur simultaneously not only at nearby stations but also at distant stations.During this event,the ULF power depression was caused by low global geomagnetic activity,as evidenced by the planetary index SME.Thus,the depression of geomagnetic ULF noise cannot be considered a reliable short-term precursor.
基金the National Natural Science Foundation of China Study on the Theory and Methods of Deterministic-Probabilistic(No.U2039207)the National Key Research and Development Program of China‘CSEP China in the Context of China Seismic Experimental Site’(No.2018YFE0109700).
文摘In 2022,four earthquakes with M_(S)≥6.0 including the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes occurred in the North-South Seismic Zone(NSSZ),which demonstrated high and strong seismicity.Pattern Informatics(PI)method,as an effective long and medium term earthquake forecasting method,has been applied to the strong earthquake forecasting in Chinese mainland and results have shown the positive performance.The earthquake catalog with magnitude above M_(S)3.0 since 1970 provided by China Earthquake Networks Center was employed in this study and the Receiver Operating Characteristic(ROC)method was applied to test the forecasting efficiency of the PI method in each selected region related to the North-South Seismic Zone systematically.Based on this,we selected the area with the best ROC testing result and analyzed the evolution process of the PI hotspot map reflecting the small seismic activity pattern prior to the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes.A“forward”forecast for the area was carried out to assess seismic risk.The study shows the following.1)PI forecasting has higher forecasting efficiency in the selected study region where the difference of seismicity in any place of the region is smaller.2)In areas with smaller differences of seismicity,the activity pattern of small earthquakes prior to the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes can be obtained by analyzing the spatio-temporal evolution process of the PI hotspot map.3)The hotspot evolution in and around the southern Tazang fault in the study area is similar to that prior to the strong earthquakes,which suggests the possible seismic hazard in the future.This study could provide some ideas to the seismic hazard assessment in other regions with high seismicity,such as Japan,Californi,Turkey,and Indonesia.
文摘In the new types of industrial activities including unconventional energy extraction associated with shale gas and hot dry rock,gas reservoir operations,CO2 geological storage,undergoing research on induced earthquake forecasting has become one of the forward positions of current seismology.As for the intense actual demand,the immature research on induced earthquake forecasting has already been applied in pre-assessment of site safety and seismic hazard and risk management.This work will review systematically recent advances in earthquake forecasting induced by hydraulic fracturing during industrial production from four aspects:earthquake occurrence probability,maximum expected magnitude forecasting,seismic risk analysis for engineering and social applications and key scientific problems.In terms of earthquake occurrence probability,we introduce statistical forecasting models such as an improved ETAS and non-stationary ETAS and physical forecasting models such as Seismogenic Index(SI)and hydro-mechanism nucleation.Research on maximum expected magnitude forecasting has experienced four stages of linear relationship with net injection volume of fluid,power exponential relationship and physical forecasting regarding fault parameters.For seismic risk analysis,we focus on probabilistic seismic hazard assessment and quantitative geological susceptibility model.Furthermore,this review is extended to key scientific problems that contain obtaining accurate fault scale and environmental stress state of reservoir,critical physical process of runaway rupture,complex mechanism of fault activation as well as physical mechanism and modeling of trailing effect.This work in understanding induced earthquake forecasting may contribute to unconventional energy development and production,seismic hazard mitigation,emergency management and scientific research as a reference.
基金supported by the National natural Science Foundation of China (NSFC, grant No. U2039207)
文摘Evaluation of numerical earthquake forecasting models needs to consider two issues of equal importance:the application scenario of the simulation,and the complexity of the model.Criterion of the evaluation-based model selection faces some interesting problems in need of discussion.
基金supported by the National Key Basic Research Science Foundation (No.2007CB209400)the National Natural Science Foundation of China (No.40638040,10672028)the Chinese Postdoctoral Science Foundation (No.20070421048)
文摘Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR), used for monitoring crust deformation, are found to be very promising in earthquake prediction subject to stress-forecasting. However, it is recognized that unless we can give reasonable explanations of these curious precursory phenomena that continue to be serendipitously observed from time to time, such high technology of GPS or InSAR is difficult to be efficiently used. Therefore, a proper model revealing the relation between earthquake evolution and stress variation, such as the phenomena of stress buildup, stress shadow and stress transfer (SSS), is crucial to the GPS or InSAR based earthquake prediction. Here we address this question through a numerical approach of earthquake development using an intuitive physical model with a map-like configuration of discontinuous fault system. The simulation provides a physical basis for the principle of stress-forecasting of earthquakes based on SSS and for the application of GPS or InSAR in earthquake prediction. The observed SSS associated phenomena with images of stress distribution during the failure process can be continuously simulated. It is shown that the SSS are better indicators of earthquake precursors than that of seismic foreshocks, suggesting a predictability of earthquakes based on stress-forecasting strategy.
文摘According to complexity and multiplicity of the post-earthquake fire, the loss forecasting model of earthquake fire is established by using radial basis function neural network with adaptability, self-learning and fault-tolerant based on the historical information. The applicability and validity of the model is manifested through testing and discussion. A simple and available method is provided for the prediction of losses of other natural disaster.
基金sponsored by the 2018 Earthquake Regime Tracking Work of CEA(2018010101)
文摘In this paper,the research progress of the Operational Earthquake Forecasting( OEF) is introduced from the major areas of concern,the concept of probability gain,hybrid model development,and the application to earthquake disaster reduction. Due to the development of OEF based on the global "Collaboratory for the Study of Earthquake Predictability( CSEP) " plan,it provides a significant technical foundation for earthquake forecast modeling and a practical foundation for solving the actual problems in earthquake preparedness and disaster mitigation. Therefore, related research and technical ideas provide inspirational and referential significance for earthquake forecasting/prediction.
基金supported by the Subject of the National Key Technology R & D Program for the 11th "Five-Year Plan"(2006BAC01B03-02-03),China
文摘Through analysis of natural and social attributes of earthquake forecasting,the relationship between the natural and social attributes of earthquake forecasting(early warning)has been discussed.Regarding the natural attributes of earthquake forecasting,it only attempts to forecast the magnitude,location and occurrence time of future earthquake based on the analysis of observational data and relevant theories and taking into consideration the present understanding of seismogeny and earthquake generation.It need not consider the consequences an earthquake forecast involves,and its purpose is to check out the level of scientific understanding of earthquakes.In respect of the social aspect of earthquake forecasting,people also focus on the consequence that the forecasting involves,in addition to its natural aspect,such as the uncertainty of earthquake prediction itself,the impact of earthquake prediction,and the earthquake resistant capability of structures(buildings),lifeline works,etc.In a word,it highlights the risk of earthquake forecasting and tries to mitigate the earthquake hazard as much as possible.In this paper,the authors also discuss the scientific and social challenges faced in earthquake prediction and analyze preliminarily the meanings and content of earthquake early warning.
基金supported by National Key Technologies Research&Development Program of China (Grant No. 2008BAC35B00).
文摘The diurnal variation of the geomagnetic vertical component is exhibited mainly by changes of phase and amplitude before strong earthquakes. Based on data recorded by the network of geomagnetic observatories in China for many years, the anomalous features of the appearance time of the minima of diurnal variations (i.e, low-point time) of the geo- magnetic vertical components and the variation of their spatial distribution (i.e, phenomena of low-point displacement) have been studied before the Wenchuan Ms8.0 earthquake. The strong aftershocks after two months' quiescence of M6 aftershocks of the Ms8.0 event were forecasted based on these studies. There are good correlativities between these geomagnetic anoma- lies and occurrences of earthquakes. It has been found that most earthquakes occur near the boundary line of sudden changes of the low-point time and generally within four days before or after the 27th or 41st day counting from the day of the appearance of the anomaly. In addition, the imminent anomalies in diurnal-variation amplitudes near the epicentral areas have also been studied before the Wenchuan earthquake.
文摘Calculation by means of the previous indices of the seismic activity can have the matter element analysis possess the forecast function. Readjusting repeatedly the grade limit value of every index can maximize the historical fitting ratio of the calculated and actual grade of the annual maximum magnitude, whose result is relatively ideal.
文摘The principle of middle and long-term earthquake forecast model of spatial and temporal synthesized probability gain and the evaluation of forecast efficiency (R-values) of various forecast methods are introduced in this paper. The R-value method, developed by Xu (1989), is further developed here, and can be applied to more complicated cases. Probability gains in spatial and/or temporal domains and the R-values for different forecast methods are estimated in North China. The synthesized probability gain is then estimated as an example.
基金the National Natural Science Fund of China (40172101)
文摘Taking the three earthquakes which occurred in Tibet, China during the period of July 12 to August 25, 2004 as an example,the paper analyses the M_S≥6.0 earthquakes that occurred in China and M_S≥7.0 earthquakes that occurred overseas since May of 2003 by combining the image data from the National Center for Environmental Prediction of America(NCEP)with the additive tectonic stress from astro-tidal-triggering (ATSA) and makes the following conclusions: The abnormal temperature image data of NCEP can better reflect the spatial-temporal evolution process of tectonic earthquake activity; The ATSA has an evident triggering effect on the activity of a fault when the terra stress is in critical status; using the NCEP images and the ATSA to forecast short-impending earthquake is a new concept; The three earthquakes occurred during the same phase of the respective ATSA cycle, i.e. that occurred at the time when the ATSA reached the relatively steady end of a peak, rather than at the time when the variation rate was maximal. In addition, the author discovered that the occurrence time of other earthquake cases during 2003~2004 in Tibet was also in the same phase of the above-mentioned cycles, and therefore, further study of this feature is needed with more earthquake cases in other areas over longer periods of time.
文摘Medium-term forecasting is an important category of electric load forecasting that covers a time span of up to one year ahead. It suits outage and maintenance planning, as well as load switching operation. We propose a new methodol-ogy that uses hourly daily loads to predict the next year hourly loads, and hence predict the peak loads expected to be reached in the next coming year. The technique is based on implementing multivariable regression on previous year's hourly loads. Three regression models are investigated in this research: the linear, the polynomial, and the exponential power. The proposed models are applied to real loads of the Jordanian power system. Results obtained using the pro-posed methods showed that their performance is close and they outperform results obtained using the widely used ex-ponential regression technique. Moreover, peak load prediction has about 90% accuracy using the proposed method-ology. The methods are generic and simple and can be implemented to hourly loads of any power system. No extra in-formation other than the hourly loads is required.
基金a result of a project sponsored by the China Seismological Bureau (95-04-07-04-01).
文摘The researches on the assessment of earthquake forecast are reviewed, then the R-value assessment is further developed theoretically in the paper. The results include the arithmetic of the R-values of earthquake occurrence under the condition that 'anomaly' occurred or no 'anomaly' occurred respectively, and the relation between the values. The distribution of Rvalue of a forecast method, corresponding to multi-status anomalies being independent each other, is also developed in the paper. The appropriate methods to estimate the R-values and extrapolate the occurrence probability of future earthquakes are also given in the paper.
文摘The ultimate and noble goal of seismology as a science is to find reliable means to predict the place, time and magnitude of expected earthquake. There are significant achievements on the way to this goal: there is a fairly clear understanding chemical physics and mechanics of the earthquake, there are reliable indicators and precursors of the approaching seismic events. However, this understanding remains to be purely intellectual achievement;it looks like highly desirable but hardly attainable purpose. Earthquake prediction is unattainable like absolute zero temperature: you may approach it, but never reach. As an alternation there is reliable evidence that microwave induced release of energy, accumulated in the earthquake focus, may be implemented by hand-made means (such as magneto-hydrodynamic generators). Magnetic control of the earthquake focus by microwave exposure is a unique means to decrease magnitude of the earthquake and transform catastrophic event in the less dangerous one. However, positive experience of reducing the magnitude of earthquake is rather limited and hardly may be implemented in practice;evidently, earthquake control is unfeasible project.
文摘By combining conventional grey correlation analysis, grey clustering method and grey forecasting methods with our multi-goal forecast thoughts and the techniques of grey time series processing, we develop six different grey earthquake forecast models in this paper. Using the record of major earthquakes in Japan from 1872 to 1995, we forecast future earthquakes in Japan. We develop an earthquake forecast model. By using the major earthquakes in Japan from 1872 to 1984, we forecast earthquakes from 1985 to 1995 and check the precision of the grey earthquake models. We find that the grey system theory can be applied to earthquake forecast. We introduce the above analysis methods and give a real example to evaluate and forecast. We also further discuss the problems of how to improve the precision of earthquake forecast and how to strengthen the forecast models in future research.
文摘Earthquake prediction is considered impossible for there is no scientific way to find the date and time, the location, and the magnitude of an earthquake. A new idea is introduced in this paper—earth rotation harmonics triggered natural volcano and earthquake. With earth rotation harmonics response model for a location, it could be possible to calculate the earthquake date and time, and the magnitude. Properties of earth rotation harmonics triggered earthquake are discussed and verified with earthquake data from USGS website. Also, both earth tide and ocean tide effects on earthquake are discussed and verified with earthquake data—tides did not trigger the natural earthquake, they only affect the earthquake activities and time.