Solid-state circuit breakers(SSCBs)are critical components in the protection of medium-voltage DC distribution networks to facilitate arc-free,fast and reliable isolation of DC faults.However,limited by the capacity o...Solid-state circuit breakers(SSCBs)are critical components in the protection of medium-voltage DC distribution networks to facilitate arc-free,fast and reliable isolation of DC faults.However,limited by the capacity of a single semiconductor device,using semi-conductor-based SSCBs at high voltage is challenging.This study presents the details of a 1.5 kV,63 A medi-um-voltage SSCB,composed primarily of a solid-state switch based on three cascaded normally-on silicon car-bide(SiC)junction field-effect transistors(JFETs)and a low-cost programmable gate drive circuit.Dynamic and static voltage sharing among the cascaded SiC JFETs of the SSCB during fault isolation is realized using the pro-posed gate drive circuit.The selection conditions for the key parameters of the SSCB gate driver are also analyzed.Additionally,an improved pulse-width modulation cur-rent-limiting protection solution is proposed to identify the permanent overcurrent and transient inrush current associated with capacitive load startup in a DC distribu-tion network.Using the developed SSCB prototype and the fault test system,experimental results are obtained to validate the fault response performance of the SSCB.Index Terms—Solid-state circuit breaker,DC distribu-tion network,SiC JFET,voltage balancing,inrush current.展开更多
The dynamic characteristic evaluation is an important prerequisite for safe and reliable operation of the mediumvoltage DC integrated power system(MIPS),and the dynamic state estimation is an essential technical appro...The dynamic characteristic evaluation is an important prerequisite for safe and reliable operation of the mediumvoltage DC integrated power system(MIPS),and the dynamic state estimation is an essential technical approach to the evaluation.Unlike the electromechanical transient process in a traditional power system,periodic change in pulse load of the MIPS is an electromagnetic transient process.As the system state suddenly changes in the range of a smaller time constant,it is difficult to estimate the dynamic state due to periodic disturbance.This paper presents a dynamic mathematical model of the MIPS according to the network structure and control strategy,thereby overcoming the restrictions of algebraic variables on the estimation and developing a dynamic state estimation method based on the extended Kalman filter.Using the method of adding fictitious process noise,it is possible to solve the problem that the linearized algorithm of the MIPS model is less reliable when an abrupt change occurs in the pulse load.Therefore,the accuracy of the dynamic state estimation and the stability of the filter can be improved under the periodic disturbance of pulse load.The simulation and experimental results confirm that the proposed model and method are feasible and effective.展开更多
为探究在集散式控制系统(distributed control system,DCS)危险排除过程中控制员不同信息搜索策略对排险任务绩效的影响及认知负荷的中介效应,基于虚拟现实技术、皮肤电采样和眼动追踪技术构建模拟DCS工控平台,招募20名相关专业被试参...为探究在集散式控制系统(distributed control system,DCS)危险排除过程中控制员不同信息搜索策略对排险任务绩效的影响及认知负荷的中介效应,基于虚拟现实技术、皮肤电采样和眼动追踪技术构建模拟DCS工控平台,招募20名相关专业被试参与模拟排险实验并对其认知负荷及排险绩效进行量化,使用眼动轨迹匹配法判断被试的信息搜索模式,研究认知负荷的中介效应及中介机理。研究结果表明:不同信息搜索策略会显著影响任务绩效;认知负荷对该影响的中介效应高达89.66%,表明信息搜索策略主要通过影响认知负荷来间接作用于排险任务绩效,认知负荷越高,任务绩效越低;逻辑系统搜索策略能通过高效图式匹配减少认知资源消耗,显著抑制认知负荷增长,任务绩效表现最佳;空间系统搜索较难抑制认知负荷,任务绩效较差;随机搜索被试认知负荷显著高于其他组,绩效表现最差;此外,不同认知负荷水平下被试的信息搜索策略没有明显转变倾向。研究结果可为DCS控制人员的考核和培训提供理论支撑。展开更多
Direct current(DC)power grids based on flexible high-voltage DC technology have become a common solution of facilitating the large-scale integration of distributed energy resources(DERs)and the construction of advance...Direct current(DC)power grids based on flexible high-voltage DC technology have become a common solution of facilitating the large-scale integration of distributed energy resources(DERs)and the construction of advanced urban power grids.In this study,a typical topology analysis is performed for an advanced urban medium-voltage DC(MVDC)distribution network with DERs,including wind,photovoltaic,and electrical energy storage elements.Then,a multi-time scale optimal power flow(OPF)strategy is proposed for the MVDC network in different operation modes,including utility grid-connected and off-grid operation modes.In the utility grid-connected operation mode,the day-ahead optimization objective minimizes both the DER power curtailment and the network power loss.In addition,in the off-grid operation mode,the day-ahead optimization objective prioritizes the satisfaction of loads,and the DER power curtailment and the network power loss are minimized.A dynamic weighting method is employed to transform the multi-objective optimization problem into a quadratically constrained quadratic programming(QCQP)problem,which is solvable via standard methods.During intraday scheduling,the optimization objective gives priority to ensure minimum deviation between the actual and predicted values of the state of charge of the battery,and then seeks to minimize the DER power curtailment and the network power loss.Model predictive control(MPC)is used to correct deviations according to the results of ultra short-term load forecasting.Furthermore,an improved particle swarm optimization(PSO)algorithm is applied for global intraday optimization,which effectively increases the convergence rate to obtain solutions.MATLAB simulation results indicate that the proposed optimization strategy is effective and efficient.展开更多
This paper proposes a novel hybrid multilevel converter with DC fault-blocking capability, i.e., the neutral-point clamped hybrid multilevel converter(NHMC).By employing two types of unipolar full-bridge submodules al...This paper proposes a novel hybrid multilevel converter with DC fault-blocking capability, i.e., the neutral-point clamped hybrid multilevel converter(NHMC).By employing two types of unipolar full-bridge submodules along with director switches, which are composed of seriesconnected insulated-gate bipolar transistors, the NHMC combines the features and advantages of the neutral-point clamped converter and the modular multilevel converter.The basic topology, operating principles, modulation scheme, and energy-balancing scheme of the NHMC are presented. The DC fault-blocking capability of the NHMC is investigated. The number of power electronic devices used by the NHMC is calculated and compared with other multilevel converters, showing that the proposed NHMC can be an economical and feasible option for medium-voltage DC transmission with overhead lines. Simulation results demonstrate the features and operating scheme of the proposed NHMC.展开更多
This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus volta...This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance.展开更多
分布式控制系统(DCS,Distributed Control System)作为工业自动化的重要技术,在许多行业中都得到广泛应用,包括能源供应、化工生产和制造等领域的过程控制。然而,随着安全环境和技术挑战日益严峻,传统的DCS系统亟须升级,以提高性能和效...分布式控制系统(DCS,Distributed Control System)作为工业自动化的重要技术,在许多行业中都得到广泛应用,包括能源供应、化工生产和制造等领域的过程控制。然而,随着安全环境和技术挑战日益严峻,传统的DCS系统亟须升级,以提高性能和效率,并增强自主可控能力,尤其是减少对国外设备和技术的依赖。这种升级不仅可以改善生产运行和管理,还能增强国家产业安全,推动产业创新和可持续发展,助力行业与经济的繁荣。展开更多
基金supported in part by Hunan Provincial Natural Science Foundation of China(No.2021JJ40172).
文摘Solid-state circuit breakers(SSCBs)are critical components in the protection of medium-voltage DC distribution networks to facilitate arc-free,fast and reliable isolation of DC faults.However,limited by the capacity of a single semiconductor device,using semi-conductor-based SSCBs at high voltage is challenging.This study presents the details of a 1.5 kV,63 A medi-um-voltage SSCB,composed primarily of a solid-state switch based on three cascaded normally-on silicon car-bide(SiC)junction field-effect transistors(JFETs)and a low-cost programmable gate drive circuit.Dynamic and static voltage sharing among the cascaded SiC JFETs of the SSCB during fault isolation is realized using the pro-posed gate drive circuit.The selection conditions for the key parameters of the SSCB gate driver are also analyzed.Additionally,an improved pulse-width modulation cur-rent-limiting protection solution is proposed to identify the permanent overcurrent and transient inrush current associated with capacitive load startup in a DC distribu-tion network.Using the developed SSCB prototype and the fault test system,experimental results are obtained to validate the fault response performance of the SSCB.Index Terms—Solid-state circuit breaker,DC distribu-tion network,SiC JFET,voltage balancing,inrush current.
基金supported by the National Key Basic Research Program of China(973 Program)(No.613294)the Natural Science Foundation of China(No.51877211)
文摘The dynamic characteristic evaluation is an important prerequisite for safe and reliable operation of the mediumvoltage DC integrated power system(MIPS),and the dynamic state estimation is an essential technical approach to the evaluation.Unlike the electromechanical transient process in a traditional power system,periodic change in pulse load of the MIPS is an electromagnetic transient process.As the system state suddenly changes in the range of a smaller time constant,it is difficult to estimate the dynamic state due to periodic disturbance.This paper presents a dynamic mathematical model of the MIPS according to the network structure and control strategy,thereby overcoming the restrictions of algebraic variables on the estimation and developing a dynamic state estimation method based on the extended Kalman filter.Using the method of adding fictitious process noise,it is possible to solve the problem that the linearized algorithm of the MIPS model is less reliable when an abrupt change occurs in the pulse load.Therefore,the accuracy of the dynamic state estimation and the stability of the filter can be improved under the periodic disturbance of pulse load.The simulation and experimental results confirm that the proposed model and method are feasible and effective.
文摘为探究在集散式控制系统(distributed control system,DCS)危险排除过程中控制员不同信息搜索策略对排险任务绩效的影响及认知负荷的中介效应,基于虚拟现实技术、皮肤电采样和眼动追踪技术构建模拟DCS工控平台,招募20名相关专业被试参与模拟排险实验并对其认知负荷及排险绩效进行量化,使用眼动轨迹匹配法判断被试的信息搜索模式,研究认知负荷的中介效应及中介机理。研究结果表明:不同信息搜索策略会显著影响任务绩效;认知负荷对该影响的中介效应高达89.66%,表明信息搜索策略主要通过影响认知负荷来间接作用于排险任务绩效,认知负荷越高,任务绩效越低;逻辑系统搜索策略能通过高效图式匹配减少认知资源消耗,显著抑制认知负荷增长,任务绩效表现最佳;空间系统搜索较难抑制认知负荷,任务绩效较差;随机搜索被试认知负荷显著高于其他组,绩效表现最差;此外,不同认知负荷水平下被试的信息搜索策略没有明显转变倾向。研究结果可为DCS控制人员的考核和培训提供理论支撑。
基金supported by Fundamental Research Funds for the Central Universities(No.2019JBM057).
文摘Direct current(DC)power grids based on flexible high-voltage DC technology have become a common solution of facilitating the large-scale integration of distributed energy resources(DERs)and the construction of advanced urban power grids.In this study,a typical topology analysis is performed for an advanced urban medium-voltage DC(MVDC)distribution network with DERs,including wind,photovoltaic,and electrical energy storage elements.Then,a multi-time scale optimal power flow(OPF)strategy is proposed for the MVDC network in different operation modes,including utility grid-connected and off-grid operation modes.In the utility grid-connected operation mode,the day-ahead optimization objective minimizes both the DER power curtailment and the network power loss.In addition,in the off-grid operation mode,the day-ahead optimization objective prioritizes the satisfaction of loads,and the DER power curtailment and the network power loss are minimized.A dynamic weighting method is employed to transform the multi-objective optimization problem into a quadratically constrained quadratic programming(QCQP)problem,which is solvable via standard methods.During intraday scheduling,the optimization objective gives priority to ensure minimum deviation between the actual and predicted values of the state of charge of the battery,and then seeks to minimize the DER power curtailment and the network power loss.Model predictive control(MPC)is used to correct deviations according to the results of ultra short-term load forecasting.Furthermore,an improved particle swarm optimization(PSO)algorithm is applied for global intraday optimization,which effectively increases the convergence rate to obtain solutions.MATLAB simulation results indicate that the proposed optimization strategy is effective and efficient.
基金supported by Key Science and Technology Project of China Southern Power Grid(Research on Key Technologies and Demonstration Application of Flexible Coordinated Control of Electromagnetic Loop Network in Metropolitan Power Grid with High Load Density,No.GZHKJ00000101)
文摘This paper proposes a novel hybrid multilevel converter with DC fault-blocking capability, i.e., the neutral-point clamped hybrid multilevel converter(NHMC).By employing two types of unipolar full-bridge submodules along with director switches, which are composed of seriesconnected insulated-gate bipolar transistors, the NHMC combines the features and advantages of the neutral-point clamped converter and the modular multilevel converter.The basic topology, operating principles, modulation scheme, and energy-balancing scheme of the NHMC are presented. The DC fault-blocking capability of the NHMC is investigated. The number of power electronic devices used by the NHMC is calculated and compared with other multilevel converters, showing that the proposed NHMC can be an economical and feasible option for medium-voltage DC transmission with overhead lines. Simulation results demonstrate the features and operating scheme of the proposed NHMC.
基金supported by the National Natural Science Foundation of China(Nos.51767017 and 51867015)the Basic Research and Innovation Group Project of Gansu(No.18JR3RA13)the Major Science and Technology Project of Gansu(No.19ZD2GA003).
文摘This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance.
文摘分布式控制系统(DCS,Distributed Control System)作为工业自动化的重要技术,在许多行业中都得到广泛应用,包括能源供应、化工生产和制造等领域的过程控制。然而,随着安全环境和技术挑战日益严峻,传统的DCS系统亟须升级,以提高性能和效率,并增强自主可控能力,尤其是减少对国外设备和技术的依赖。这种升级不仅可以改善生产运行和管理,还能增强国家产业安全,推动产业创新和可持续发展,助力行业与经济的繁荣。