A novel technique of electroforming with orbital moving cathode was carried out for the fabrication of non-rotating thin-walled parts.This technique features a large number of insulating and insoluble hard particles a...A novel technique of electroforming with orbital moving cathode was carried out for the fabrication of non-rotating thin-walled parts.This technique features a large number of insulating and insoluble hard particles as a real-time polishing to the cathode.When cathode moves,hard particles polish its surface and provide the nickel non-rotating parts with near-mirror finishing.Morphology,microstructure,surface roughness and micro hardness of deposits fabricated by novel method were studied in contrast with the sample produced by traditional electroforming methods.Theoretical analysis and experimental results showed that the novel technique could effectively remove the hydrogen bubbles and nodules,disturb the crystal nucleation,and refine the grains of layer.The mechanical properties were significantly improved over traditional method.The micro-hardness of the layer was in a uniform distribution ranging from 345 HV to 360 HV.It was confirmed that this technique had practical significance to non-rotating thin-walled parts.展开更多
In traditional electroforming process for revolving parts with complex profiles, the drawbacks on surface of deposits, such as pinholes and nodules, will lead to varying physical and mechanical properties on different...In traditional electroforming process for revolving parts with complex profiles, the drawbacks on surface of deposits, such as pinholes and nodules, will lead to varying physical and mechanical properties on different parts of electroformed components. To solve the problem, compositely moving cathode is employed in abrasive-assisted electroforming of revolving parts with complicated profiles. The cathode translates and rotates simultaneously to achieve uniform friction effect on deposits without drawbacks. The influences of current density and transla- tion speed on the microstructure and properties of the electroformed nickel layers are investigated. It is found that abrasive-assisted electroforming with compound cathode motion can effectively remove the pinholes and nodules, positively affect the crystal nucleation, and refine the grains of layer. The increase of current density will lead to coarse microstructure and lower micro hardness, from 325 HV down to 189 HV. While, faster translational linear speed produces better surface quality and higher micro hardness, from 236 HV up to 283 HV. The weld-ability of the electroformed layers are also studied through the metallurgical analysis of welded joints between nickel layer and 304 stainless steel. The electrodeposited nickel layer shows fine performance in welding. The novel compound motion of cathode promotes the mechanical properties and refines the microstructure of deposited layer.展开更多
Thickness deposition is a crucial issue on the application of electroformed micro mold inserts. Edge concentration effect is the main source of the non-uniformity. The techniques of adopting a non-conducting shield, a...Thickness deposition is a crucial issue on the application of electroformed micro mold inserts. Edge concentration effect is the main source of the non-uniformity. The techniques of adopting a non-conducting shield, a secondary electrode and a movable cathode were explored to improve the thickness deposition uniformity during the nickel electroforming process. Regarding these techniques, a micro electroforming system with a movable cathode was particularly developed. The thickness variation of a 16 mm×16 mm electroformed sample decreased respectively from 150% to 35%, 12% and 18% by these three techniques. Combining these validated methods, anickelmold insert for microlens array was electroformed with satisfactory mechanical properties and high replication precision. It could be applied to the following injection molding process.展开更多
The micro gear mold for powder injection molding was made by electroforming process of Fe-Ni and Fe-Ni-W alloys using UV-lithography process. Kinetics and activation energies in electroplating of both alloys were inve...The micro gear mold for powder injection molding was made by electroforming process of Fe-Ni and Fe-Ni-W alloys using UV-lithography process. Kinetics and activation energies in electroplating of both alloys were investigated to determine the best process conditions. Fe content within electrodeposited Fe-Ni alloys increased with the increase of rotating disk speed and the decrease of temperature and it is considered from the calculated activation energy of iron content that the rate determining step is controlled by mass transfer. Iron content in Fe-Ni electrodeposit varied from 58.33% to 70.45% by increasing current density from 2 to 6 A/drn2. Also, iron content in Fe-Ni-W electrodeposit increased from 59.32% to 70.15%, nickel content decreased from 27.86% to 17.07% and the content of tungsten was almost consistent in the range of 12.78%-12.82% although the current density increases from 1.5 to 5 A/dm^2. For the electroforming of micro gear mold, SU-8 mandrel with 550 μm in diameter and 400 μm in height was prepared by UV-lithography processing. Subsequently, Fe-36Ni and Fe-20Ni-13W alloys micro gear molds were electroformed successfully. Surface hardness values of the electroformed micro molds were measured to be HV490 and HV645, respectively.展开更多
Nickel deposits were prepared by pulse electroforming, in which an aluminium alloy cylinder mandrel rotated in hard particles filling between the electrodes. The microstructure and properties of the deposits were stud...Nickel deposits were prepared by pulse electroforming, in which an aluminium alloy cylinder mandrel rotated in hard particles filling between the electrodes. The microstructure and properties of the deposits were studied by contrasting with electroforming using direct current. The results show that the surface of the deposits obtained by pulse electroforming displays more obvious abrasion marks and (200) preferred orientation to that electroformed using direct current at the same average current density. Besides, the deposits represent higher microhardness and better high-temperature corrosion resistance. It is also found that the orientation index of plane (200) and microhardness significantly increase with the reduction of duty cycle of pulse current. During pulse electroforming, the longer off-time and higher peak current density are helpful to strengthening the hard particles’ polishing effect on the surface of deposits and perturbing effect on crystal nucleation of atoms.展开更多
The metal matrix composite coatings of Co-Ni-Al2O3 were studied by electrolytic codeposition of Co-Ni alloys and Al2O3 on a Cu substrate from a sulfamate electrolyte containing Al2O3 particles. It was illustrated from...The metal matrix composite coatings of Co-Ni-Al2O3 were studied by electrolytic codeposition of Co-Ni alloys and Al2O3 on a Cu substrate from a sulfamate electrolyte containing Al2O3 particles. It was illustrated from the examined results of SEM, AFM and XRD that surface morphology and microstructure of Co-Ni-Al2O3 coatings appear to be mainly influenced by variations in Co content. The high Co content coatings with hcp lattice structure have a more uniform and fine structure than that of low Co content coatings with fcc lattice structure. The codeposition of Al2O3 particles in Co-Ni alloys can not change the phase structure of solid solution, only affects the growth and orientation of crystal planes and mostly increase the d value of lattice.展开更多
This work reports a procedure for the fabrication of a complex mould using the technique of electroforming. This was with a view to finding a cheaper and less labour-intensive mould production route practicable locall...This work reports a procedure for the fabrication of a complex mould using the technique of electroforming. This was with a view to finding a cheaper and less labour-intensive mould production route practicable locally. A Plaster of Paris electroforming mandrel in the shape of a water bottle was produced and made electrically conducting with a layer of copper conducting paint. Considerations for electroform removal were made by applying a thin, chloroform-dissolvable epoxy layer beneath the conducting copper paint. Uniformity of deposition on the mandrel was accomplished with the construction of a special deposition bath with multiple copper anodes around its perimeter. The electroforming was done in the galvanostatic electro deposition mode for about 240 hrs in a 1 M Cu2SO4 bath with the deposition of elemental copper on the mandrel. Incidences of rising bath pH were mediated with concentrated H2SO4. A free-standing electroform representing the mould cavity was formed in the deposition. The product so formed was a reproduction of the net-shape of the mandrel exhibiting smooth surface finish. The electroforming was cast with an aluminum backing layer to complete its transformation into a split mould. The finished mould was comparable in appearance to the imported moulds in terms of appearance and reproduction of intricate surface patterns. The simplicity and low cost of this method significantly reduced the requirements for expensive instrumentation and highly skilled labour for mould production.展开更多
Invar合金是制备精细金属掩模板(Fine Metal Mask,简称FMM)的重要基材,其纯净度直接影响FMM的质量以及有机发光二极管(Organic Light EmittingDiode,简称OLED)技术的发展水平。首先概述了FMM的主要制备技术,介绍了对FMM基材Invar合金的...Invar合金是制备精细金属掩模板(Fine Metal Mask,简称FMM)的重要基材,其纯净度直接影响FMM的质量以及有机发光二极管(Organic Light EmittingDiode,简称OLED)技术的发展水平。首先概述了FMM的主要制备技术,介绍了对FMM基材Invar合金的质量要求,并对国产Invar合金箔和国外进口Invar合金箔内的夹杂物进行了表征分析。结果表明,国产Invar合金箔的纯净度与进口Invar合金箔相比,仍存在很大的差距,主要体现在夹杂物的尺寸和数量等方面。为实现OLED配套产业全国产化,攻克Invar合金的近零夹杂难题,开发新型制备技术是关键突破点。最后详细论述了超重力技术在Invar合金除杂方面的研究成果和电铸Invar合金箔应用的可行性,并指出超重力技术和电铸技术有望解决近零夹杂金属材料的制备难题。展开更多
The microstructure in the electroformed copper liners of shaped charges prepared with different electrolytes was studied by Scanning Electron Microscopy (SEM) and Electron Backscattering Kikuchi Pattern (EBSP) met...The microstructure in the electroformed copper liners of shaped charges prepared with different electrolytes was studied by Scanning Electron Microscopy (SEM) and Electron Backscattering Kikuchi Pattern (EBSP) methods. SEM observations revealed the existence of columnar grains in electroformed copper liners of shaped charges formed by electrolyte without any additive and the average grain size is about 3 μm. When an additive is introduced to the electrolyte, the grains formed in the copper liners become equiaxed and finer. EBSP results show that the columnar grain grown during electroformation has the most preferential growth direction, whereas a micro-texture does not exit in the specimen prepared by electrolyte with the additive. Further, explosive detonation deformation experiments show that penetration depth is dramatically improved when the electroformed copper liners of shaped charges exhibit equiaxed grains.展开更多
基金Funded partly by the National Natural Science Foundation of China(No.50975143)the Aviation Science Funds,China (No.2009ZE52048)
文摘A novel technique of electroforming with orbital moving cathode was carried out for the fabrication of non-rotating thin-walled parts.This technique features a large number of insulating and insoluble hard particles as a real-time polishing to the cathode.When cathode moves,hard particles polish its surface and provide the nickel non-rotating parts with near-mirror finishing.Morphology,microstructure,surface roughness and micro hardness of deposits fabricated by novel method were studied in contrast with the sample produced by traditional electroforming methods.Theoretical analysis and experimental results showed that the novel technique could effectively remove the hydrogen bubbles and nodules,disturb the crystal nucleation,and refine the grains of layer.The mechanical properties were significantly improved over traditional method.The micro-hardness of the layer was in a uniform distribution ranging from 345 HV to 360 HV.It was confirmed that this technique had practical significance to non-rotating thin-walled parts.
基金Supported by National Natural Science Foundation of China(Grant No.51475239)Program for New Century Excellent Talents in University of China(Grand No.NCET-10-0074)
文摘In traditional electroforming process for revolving parts with complex profiles, the drawbacks on surface of deposits, such as pinholes and nodules, will lead to varying physical and mechanical properties on different parts of electroformed components. To solve the problem, compositely moving cathode is employed in abrasive-assisted electroforming of revolving parts with complicated profiles. The cathode translates and rotates simultaneously to achieve uniform friction effect on deposits without drawbacks. The influences of current density and transla- tion speed on the microstructure and properties of the electroformed nickel layers are investigated. It is found that abrasive-assisted electroforming with compound cathode motion can effectively remove the pinholes and nodules, positively affect the crystal nucleation, and refine the grains of layer. The increase of current density will lead to coarse microstructure and lower micro hardness, from 325 HV down to 189 HV. While, faster translational linear speed produces better surface quality and higher micro hardness, from 236 HV up to 283 HV. The weld-ability of the electroformed layers are also studied through the metallurgical analysis of welded joints between nickel layer and 304 stainless steel. The electrodeposited nickel layer shows fine performance in welding. The novel compound motion of cathode promotes the mechanical properties and refines the microstructure of deposited layer.
基金Projects(51305465,91123012)supported by the National Natural Science Foundation of China
文摘Thickness deposition is a crucial issue on the application of electroformed micro mold inserts. Edge concentration effect is the main source of the non-uniformity. The techniques of adopting a non-conducting shield, a secondary electrode and a movable cathode were explored to improve the thickness deposition uniformity during the nickel electroforming process. Regarding these techniques, a micro electroforming system with a movable cathode was particularly developed. The thickness variation of a 16 mm×16 mm electroformed sample decreased respectively from 150% to 35%, 12% and 18% by these three techniques. Combining these validated methods, anickelmold insert for microlens array was electroformed with satisfactory mechanical properties and high replication precision. It could be applied to the following injection molding process.
文摘The micro gear mold for powder injection molding was made by electroforming process of Fe-Ni and Fe-Ni-W alloys using UV-lithography process. Kinetics and activation energies in electroplating of both alloys were investigated to determine the best process conditions. Fe content within electrodeposited Fe-Ni alloys increased with the increase of rotating disk speed and the decrease of temperature and it is considered from the calculated activation energy of iron content that the rate determining step is controlled by mass transfer. Iron content in Fe-Ni electrodeposit varied from 58.33% to 70.45% by increasing current density from 2 to 6 A/drn2. Also, iron content in Fe-Ni-W electrodeposit increased from 59.32% to 70.15%, nickel content decreased from 27.86% to 17.07% and the content of tungsten was almost consistent in the range of 12.78%-12.82% although the current density increases from 1.5 to 5 A/dm^2. For the electroforming of micro gear mold, SU-8 mandrel with 550 μm in diameter and 400 μm in height was prepared by UV-lithography processing. Subsequently, Fe-36Ni and Fe-20Ni-13W alloys micro gear molds were electroformed successfully. Surface hardness values of the electroformed micro molds were measured to be HV490 and HV645, respectively.
文摘Nickel deposits were prepared by pulse electroforming, in which an aluminium alloy cylinder mandrel rotated in hard particles filling between the electrodes. The microstructure and properties of the deposits were studied by contrasting with electroforming using direct current. The results show that the surface of the deposits obtained by pulse electroforming displays more obvious abrasion marks and (200) preferred orientation to that electroformed using direct current at the same average current density. Besides, the deposits represent higher microhardness and better high-temperature corrosion resistance. It is also found that the orientation index of plane (200) and microhardness significantly increase with the reduction of duty cycle of pulse current. During pulse electroforming, the longer off-time and higher peak current density are helpful to strengthening the hard particles’ polishing effect on the surface of deposits and perturbing effect on crystal nucleation of atoms.
文摘The metal matrix composite coatings of Co-Ni-Al2O3 were studied by electrolytic codeposition of Co-Ni alloys and Al2O3 on a Cu substrate from a sulfamate electrolyte containing Al2O3 particles. It was illustrated from the examined results of SEM, AFM and XRD that surface morphology and microstructure of Co-Ni-Al2O3 coatings appear to be mainly influenced by variations in Co content. The high Co content coatings with hcp lattice structure have a more uniform and fine structure than that of low Co content coatings with fcc lattice structure. The codeposition of Al2O3 particles in Co-Ni alloys can not change the phase structure of solid solution, only affects the growth and orientation of crystal planes and mostly increase the d value of lattice.
文摘This work reports a procedure for the fabrication of a complex mould using the technique of electroforming. This was with a view to finding a cheaper and less labour-intensive mould production route practicable locally. A Plaster of Paris electroforming mandrel in the shape of a water bottle was produced and made electrically conducting with a layer of copper conducting paint. Considerations for electroform removal were made by applying a thin, chloroform-dissolvable epoxy layer beneath the conducting copper paint. Uniformity of deposition on the mandrel was accomplished with the construction of a special deposition bath with multiple copper anodes around its perimeter. The electroforming was done in the galvanostatic electro deposition mode for about 240 hrs in a 1 M Cu2SO4 bath with the deposition of elemental copper on the mandrel. Incidences of rising bath pH were mediated with concentrated H2SO4. A free-standing electroform representing the mould cavity was formed in the deposition. The product so formed was a reproduction of the net-shape of the mandrel exhibiting smooth surface finish. The electroforming was cast with an aluminum backing layer to complete its transformation into a split mould. The finished mould was comparable in appearance to the imported moulds in terms of appearance and reproduction of intricate surface patterns. The simplicity and low cost of this method significantly reduced the requirements for expensive instrumentation and highly skilled labour for mould production.
文摘Invar合金是制备精细金属掩模板(Fine Metal Mask,简称FMM)的重要基材,其纯净度直接影响FMM的质量以及有机发光二极管(Organic Light EmittingDiode,简称OLED)技术的发展水平。首先概述了FMM的主要制备技术,介绍了对FMM基材Invar合金的质量要求,并对国产Invar合金箔和国外进口Invar合金箔内的夹杂物进行了表征分析。结果表明,国产Invar合金箔的纯净度与进口Invar合金箔相比,仍存在很大的差距,主要体现在夹杂物的尺寸和数量等方面。为实现OLED配套产业全国产化,攻克Invar合金的近零夹杂难题,开发新型制备技术是关键突破点。最后详细论述了超重力技术在Invar合金除杂方面的研究成果和电铸Invar合金箔应用的可行性,并指出超重力技术和电铸技术有望解决近零夹杂金属材料的制备难题。
基金financially supported by the National Natural Science Foundation of China (No.59971008)
文摘The microstructure in the electroformed copper liners of shaped charges prepared with different electrolytes was studied by Scanning Electron Microscopy (SEM) and Electron Backscattering Kikuchi Pattern (EBSP) methods. SEM observations revealed the existence of columnar grains in electroformed copper liners of shaped charges formed by electrolyte without any additive and the average grain size is about 3 μm. When an additive is introduced to the electrolyte, the grains formed in the copper liners become equiaxed and finer. EBSP results show that the columnar grain grown during electroformation has the most preferential growth direction, whereas a micro-texture does not exit in the specimen prepared by electrolyte with the additive. Further, explosive detonation deformation experiments show that penetration depth is dramatically improved when the electroformed copper liners of shaped charges exhibit equiaxed grains.