Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loos...Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.展开更多
Based on the principle of saturated infiltration and the Green-Ampt model,an unsaturated infiltration model for a soil slope surface was established for either constant moisture content,or depth-varying moisture conte...Based on the principle of saturated infiltration and the Green-Ampt model,an unsaturated infiltration model for a soil slope surface was established for either constant moisture content,or depth-varying moisture content and the slope.Infiltration parameters in the partially saturated slope were revealed under sustained rainfall.Through analysis of the variation of initial moisture content in the slope,the ponding time,infiltration depth,and infiltration rate were deduced for an unsaturated soil slope subject to rainfall infiltration.There is no ponded water on the surface of the slope under sustained low-intensity rainfall.The results show that the infiltration parameters of an unsaturated slope are influenced by the initial moisture content and the wetting front saturation,the soil cohesion and rainfall intensity under sustained rainfall.More short-term slope failures can occur with the decrease of cohesion of the soil of the slope.The ponding time and infiltration depth differ considering constant or different initial moisture content respectively in the soil slope.Then,best-fit curves of the infiltration rate,ponding time,and infiltration depth to the wetting front saturation were obtained with constant or different initial moisture contents.And the slope failure time is roughly uniform when subject to a rainfall intensity I>5 mm/h.展开更多
Two critical factors,namely intense precipitation and intricate excavation,can trigger rock mass disasters in mining operations.In this study,an indoor rainfall system was developed to precisely regulate the flow and ...Two critical factors,namely intense precipitation and intricate excavation,can trigger rock mass disasters in mining operations.In this study,an indoor rainfall system was developed to precisely regulate the flow and intensity of precipitation.A large-scale model experiment was conducted on a self-designed physical simulation experiment platform to investigate the failure and instability of high-steep rock slopes under unsaturated conditions.The real-time reproduction of the progressive failure process in high-steep rock slopes enabled the determination of the critical rainfall intensity and revealed the mechanism underlying slope instability.Experiment results indicated that rainfall may be the primary factor contributing to rock mass instability,while continuous pillar mining exacerbates the extent of rock mass failure.The critical failure stage of high-steep rock slopes occurs at a rainfall intensity of 40 mm/h,whereas a rainfall exceeding 50 mm can induce critical instability and precipitation reaching up to 60 mm will result in slope failure.The improved region growing segmentation method(IRGSM)was subsequently employed for image recognition of rock mass deformation in underground mines.Herein an error comparison with the simple linear iterative cluster(SLIC)superpixel method and the original region growing segmentation method(ORGSM)showed that the average identification error in the X and Y directions by the method was reduced significantly(1.82%and 1.80%in IRGSM;4.70%and 6.26%in SLIC;9.45%and 12.40%in ORGSM).Ultimately,the relationship between rainfall intensity and failure probability was analyzed using the Monte Carlo method.Moreover,the stability assessment criteria of rock slope under unsaturated condition were quantitatively and accurately evaluated.展开更多
Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression fo...Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression for the load-collapse(LC) yield surface that can match flexibly the normal compression lines at different suctions. The predictions of the modified BBM for the controlled-suction triaxial test on the unsaturated compacted clay are presented and compared with the experimental results. A good agreement between the predicted and experimental results demonstrates the reasonability of the modified BBM. On this basis, the coupled processes of groundwater flow and soil deformation in a homogeneous soil slope under a long heavy rainfall are simulated with the proposed elasto-plastic model. The numerical results reveal that the failure of a slope under rainfall infiltration is due to both the reduction of soil suction and the significant rise in groundwater table. The evolution of the displacements is greatly related to the change of suction. The maximum collapse deformation happens near the surface of slope where infiltrated rainwater can quickly reach. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides.展开更多
Minimizing parameter uncertainty is crucial in the application of hydrologic models.Isotopic information in various hydrologic components of the water cycle can expand our knowledge of the dynamics of water flow in th...Minimizing parameter uncertainty is crucial in the application of hydrologic models.Isotopic information in various hydrologic components of the water cycle can expand our knowledge of the dynamics of water flow in the system,provide additional information for parameter estimation,and improve parameter identifiability.This study combined the Philip infiltration model with an isotopic mixing model using an isotopic mass balance approach for estimating parameters in the Philip infiltration model.Two approaches to parameter estimation were compared:(a) using isotopic information to determine the soil water transmission and then hydrologic information to estimate the soil sorptivity,and(b) using hydrologic information to determine the soil water transmission and the soil sorptivity.Results of parameter estimation were verified through a rainfall infiltration experiment in a laboratory under rainfall with constant isotopic compositions and uniform initial soil water content conditions.Experimental results showed that approach(a),using isotopic and hydrologic information,estimated the soil water transmission in the Philip infiltration model in a manner that matched measured values well.The results of parameter estimation of approach(a) were better than those of approach(b).It was also found that the analytical precision of hydrogen and oxygen stable isotopes had a significant effect on parameter estimation using isotopic information.展开更多
The soil infiltrability of hill-slope is important to such studies andpractices as hydrological process, crop water supply, irrigation practices, and soil erosion. A newmethod for measuring soil infiltrability on hill...The soil infiltrability of hill-slope is important to such studies andpractices as hydrological process, crop water supply, irrigation practices, and soil erosion. A newmethod for measuring soil infiltrability on hill-slope under rainfall condition with run off-on-outwas advanced. Based on water (mass) balance, the mathematic models for soil infiltrability estimatedfrom the advances of runoff on soil surface and the water running out of the slope were derived.Experiments of 2 cases were conducted. Case Ⅰ was done under a rainfall intensity of 20 mm/h, at aslope gradient of about 0° with a runoff/on length (area) ratio of 1 : 1. Case Ⅱ was under arainfall intensity of 60 mm/h and a slope of 20° with a runoff/on length (area) ratio of 1 : 1.Double ring method was also used to measure the infiltrability for comparison purposes. Theexperiments were done with soil moisture of 10%. Required data were collected from laboratoryexperiments. The infiltrability curves were computed from the experimental data. The resultsindicate that the method can well conceptually represent the transient infiltrability process, withcapability to simulate the very high initial soil infiltrability. The rationalities of the methodand the models were validated. The errors of the method for the two cases were 1.82%/1.39% and4.49%/3.529% (Experimental/Model) respectively, as estimated by comparing the rainfall amount withthe infiltrated volume, to demonstrate the accuracy of the method. The transient and steadyinfiltrability measured with double ring was much lower than those with this new method, due towater supply limit and soil aggregates breaking down at initial infiltration stage. The method canovercome the short backs of the traditional sprinkler method and double ring method for soilinfil-traility. It can be used to measure the infiltrability of sloped surface underrainfall-runoff-erosion conditions, in the related studies.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.51579170 and 51179118)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51321065)
文摘Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.
基金sponsored by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY19E080007,No.LY19E080008)the Natural Science Foundation of China(Grant No.51578356)the Science and Technology Fund of Yunnan Provincial Communication Department of China(Grant No.2010(A)06-b)。
文摘Based on the principle of saturated infiltration and the Green-Ampt model,an unsaturated infiltration model for a soil slope surface was established for either constant moisture content,or depth-varying moisture content and the slope.Infiltration parameters in the partially saturated slope were revealed under sustained rainfall.Through analysis of the variation of initial moisture content in the slope,the ponding time,infiltration depth,and infiltration rate were deduced for an unsaturated soil slope subject to rainfall infiltration.There is no ponded water on the surface of the slope under sustained low-intensity rainfall.The results show that the infiltration parameters of an unsaturated slope are influenced by the initial moisture content and the wetting front saturation,the soil cohesion and rainfall intensity under sustained rainfall.More short-term slope failures can occur with the decrease of cohesion of the soil of the slope.The ponding time and infiltration depth differ considering constant or different initial moisture content respectively in the soil slope.Then,best-fit curves of the infiltration rate,ponding time,and infiltration depth to the wetting front saturation were obtained with constant or different initial moisture contents.And the slope failure time is roughly uniform when subject to a rainfall intensity I>5 mm/h.
基金the Research Fund of National Natural Science Foundation of China(NSFC)(No.42277154)the project supported by graduate research and innovation foundation of Chongqing,China(No.CYB22023)+3 种基金Guizhou Province Science and Technology Planning Project(No.Guizhou science and technology cooperation support[2022]common 229)National Natural Science Foundation of Shandong Province of China(NSFC)(No.ZR2022ME188)the State Key Laboratory of Coal Resources and Safe Mining,CUMT(No.SKLCRSM22KF009)Open Fund of National Engineering and Technology Research Center for Development and Utilization of Phosphate Resources of China(No.NECP 2022-04).
文摘Two critical factors,namely intense precipitation and intricate excavation,can trigger rock mass disasters in mining operations.In this study,an indoor rainfall system was developed to precisely regulate the flow and intensity of precipitation.A large-scale model experiment was conducted on a self-designed physical simulation experiment platform to investigate the failure and instability of high-steep rock slopes under unsaturated conditions.The real-time reproduction of the progressive failure process in high-steep rock slopes enabled the determination of the critical rainfall intensity and revealed the mechanism underlying slope instability.Experiment results indicated that rainfall may be the primary factor contributing to rock mass instability,while continuous pillar mining exacerbates the extent of rock mass failure.The critical failure stage of high-steep rock slopes occurs at a rainfall intensity of 40 mm/h,whereas a rainfall exceeding 50 mm can induce critical instability and precipitation reaching up to 60 mm will result in slope failure.The improved region growing segmentation method(IRGSM)was subsequently employed for image recognition of rock mass deformation in underground mines.Herein an error comparison with the simple linear iterative cluster(SLIC)superpixel method and the original region growing segmentation method(ORGSM)showed that the average identification error in the X and Y directions by the method was reduced significantly(1.82%and 1.80%in IRGSM;4.70%and 6.26%in SLIC;9.45%and 12.40%in ORGSM).Ultimately,the relationship between rainfall intensity and failure probability was analyzed using the Monte Carlo method.Moreover,the stability assessment criteria of rock slope under unsaturated condition were quantitatively and accurately evaluated.
基金Project(1301015A)supported by the Post-doctoral Research Fund of Jiangsu Province,ChinaProject Funded by the Priority Academic Program of Jiangsu Higher Education Institution,China+1 种基金Project(2014M561566)supported by China Postdoctoral Science FoundationProject(YK913007)supported by Key Laboratory of Earth-Rock Dam Failure Mechanism and Safety Control Technologies,China
文摘Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression for the load-collapse(LC) yield surface that can match flexibly the normal compression lines at different suctions. The predictions of the modified BBM for the controlled-suction triaxial test on the unsaturated compacted clay are presented and compared with the experimental results. A good agreement between the predicted and experimental results demonstrates the reasonability of the modified BBM. On this basis, the coupled processes of groundwater flow and soil deformation in a homogeneous soil slope under a long heavy rainfall are simulated with the proposed elasto-plastic model. The numerical results reveal that the failure of a slope under rainfall infiltration is due to both the reduction of soil suction and the significant rise in groundwater table. The evolution of the displacements is greatly related to the change of suction. The maximum collapse deformation happens near the surface of slope where infiltrated rainwater can quickly reach. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides.
基金supported by the National Natural Science Foundation of China(Grant No.51279057)
文摘Minimizing parameter uncertainty is crucial in the application of hydrologic models.Isotopic information in various hydrologic components of the water cycle can expand our knowledge of the dynamics of water flow in the system,provide additional information for parameter estimation,and improve parameter identifiability.This study combined the Philip infiltration model with an isotopic mixing model using an isotopic mass balance approach for estimating parameters in the Philip infiltration model.Two approaches to parameter estimation were compared:(a) using isotopic information to determine the soil water transmission and then hydrologic information to estimate the soil sorptivity,and(b) using hydrologic information to determine the soil water transmission and the soil sorptivity.Results of parameter estimation were verified through a rainfall infiltration experiment in a laboratory under rainfall with constant isotopic compositions and uniform initial soil water content conditions.Experimental results showed that approach(a),using isotopic and hydrologic information,estimated the soil water transmission in the Philip infiltration model in a manner that matched measured values well.The results of parameter estimation of approach(a) were better than those of approach(b).It was also found that the analytical precision of hydrogen and oxygen stable isotopes had a significant effect on parameter estimation using isotopic information.
文摘The soil infiltrability of hill-slope is important to such studies andpractices as hydrological process, crop water supply, irrigation practices, and soil erosion. A newmethod for measuring soil infiltrability on hill-slope under rainfall condition with run off-on-outwas advanced. Based on water (mass) balance, the mathematic models for soil infiltrability estimatedfrom the advances of runoff on soil surface and the water running out of the slope were derived.Experiments of 2 cases were conducted. Case Ⅰ was done under a rainfall intensity of 20 mm/h, at aslope gradient of about 0° with a runoff/on length (area) ratio of 1 : 1. Case Ⅱ was under arainfall intensity of 60 mm/h and a slope of 20° with a runoff/on length (area) ratio of 1 : 1.Double ring method was also used to measure the infiltrability for comparison purposes. Theexperiments were done with soil moisture of 10%. Required data were collected from laboratoryexperiments. The infiltrability curves were computed from the experimental data. The resultsindicate that the method can well conceptually represent the transient infiltrability process, withcapability to simulate the very high initial soil infiltrability. The rationalities of the methodand the models were validated. The errors of the method for the two cases were 1.82%/1.39% and4.49%/3.529% (Experimental/Model) respectively, as estimated by comparing the rainfall amount withthe infiltrated volume, to demonstrate the accuracy of the method. The transient and steadyinfiltrability measured with double ring was much lower than those with this new method, due towater supply limit and soil aggregates breaking down at initial infiltration stage. The method canovercome the short backs of the traditional sprinkler method and double ring method for soilinfil-traility. It can be used to measure the infiltrability of sloped surface underrainfall-runoff-erosion conditions, in the related studies.