An algorithm involving Mel-Frequency Cepstral Coefficients (MFCCs) is provided to perform signal feature extraction for the task of speaker accent recognition. Then different classifiers are compared based on the MFCC...An algorithm involving Mel-Frequency Cepstral Coefficients (MFCCs) is provided to perform signal feature extraction for the task of speaker accent recognition. Then different classifiers are compared based on the MFCC feature. For each signal, the mean vector of MFCC matrix is used as an input vector for pattern recognition. A sample of 330 signals, containing 165 US voice and 165 non-US voice, is analyzed. By comparison, k-nearest neighbors yield the highest average test accuracy, after using a cross-validation of size 500, and least time being used in the computation.展开更多
美尔频率倒谱参数(Mel frequency cepstral coefficient,MFCC)仿真了人耳的听觉特性,在语音识别实际应用中取得了比较高的识别率。为了更进一步完善系统以提高系统的识别率,提出一种将MFCC和残差相位相结合的方法进行语音识别。将传统...美尔频率倒谱参数(Mel frequency cepstral coefficient,MFCC)仿真了人耳的听觉特性,在语音识别实际应用中取得了比较高的识别率。为了更进一步完善系统以提高系统的识别率,提出一种将MFCC和残差相位相结合的方法进行语音识别。将传统的基于MFCC的语音识别效果,与基于MFCC和残差相位相结合的语音识别效果进行比较。通过在MATLAB环境下进行仿真实验得出理想结论。利用MFCC和残差相位相结合的识别率高于MFCC的系统的识别率。所提出的改进算法更好的完善了识别系统,获得了更高的语音识别率。展开更多
文摘An algorithm involving Mel-Frequency Cepstral Coefficients (MFCCs) is provided to perform signal feature extraction for the task of speaker accent recognition. Then different classifiers are compared based on the MFCC feature. For each signal, the mean vector of MFCC matrix is used as an input vector for pattern recognition. A sample of 330 signals, containing 165 US voice and 165 non-US voice, is analyzed. By comparison, k-nearest neighbors yield the highest average test accuracy, after using a cross-validation of size 500, and least time being used in the computation.
文摘美尔频率倒谱参数(Mel frequency cepstral coefficient,MFCC)仿真了人耳的听觉特性,在语音识别实际应用中取得了比较高的识别率。为了更进一步完善系统以提高系统的识别率,提出一种将MFCC和残差相位相结合的方法进行语音识别。将传统的基于MFCC的语音识别效果,与基于MFCC和残差相位相结合的语音识别效果进行比较。通过在MATLAB环境下进行仿真实验得出理想结论。利用MFCC和残差相位相结合的识别率高于MFCC的系统的识别率。所提出的改进算法更好的完善了识别系统,获得了更高的语音识别率。