期刊文献+
共找到262篇文章
< 1 2 14 >
每页显示 20 50 100
基于特征融合和B-SVM的鸟鸣声识别算法 被引量:1
1
作者 陈晓 曾昭优 《声学技术》 CSCD 北大核心 2024年第1期119-126,共8页
为了实现在野外通过低成本嵌入式系统识别鸟类,提出了基于特征融合和B-SVM的鸟鸣声识别方法。对鸟鸣声信号提取梅尔频率倒谱系数、翻转梅尔频率倒谱系数、短时能量和短时过零率组成特征参数,通过线性判别算法对特征参数进行特征融合。... 为了实现在野外通过低成本嵌入式系统识别鸟类,提出了基于特征融合和B-SVM的鸟鸣声识别方法。对鸟鸣声信号提取梅尔频率倒谱系数、翻转梅尔频率倒谱系数、短时能量和短时过零率组成特征参数,通过线性判别算法对特征参数进行特征融合。利用黑寡妇算法通过测试集对支持向量机模型的核参数和损失值进行优化得到B-SVM模型。利用Xeno-canto鸟鸣声数据集对本文算法进行了测试,结果表明该方法的识别准确率为93.23%。算法维度参数的大小和融合特征维度的高低是影响算法识别效果的重要因素。在相同条件下,文中所提的基于特征融合和B-SVM模型的鸟鸣声识别算法相较于其他特征参数和模型,识别的准确率更高,为野外鸟类识别提供了参考。 展开更多
关键词 鸟鸣声识别 梅尔频率倒谱系数 线性判别算法 黑寡妇优化算法 支持向量机
下载PDF
基于MFCC和GMM的瓷砖空鼓率识别系统及方法
2
作者 周浩 梁军汀 卢杰 《无损检测》 CAS 2024年第3期28-32,55,共6页
针对瓷砖因内部空鼓而引起的松动、脱落等质量问题或其他安全隐患问题,研制了一套用于瓷砖空鼓率识别的试验系统。该系统采用梅尔倒谱系数(MFCC)法提取瓷砖敲击声的特征参数,再用高斯混合模型(GMM)法对MFCC特征参数进行分类和识别。试... 针对瓷砖因内部空鼓而引起的松动、脱落等质量问题或其他安全隐患问题,研制了一套用于瓷砖空鼓率识别的试验系统。该系统采用梅尔倒谱系数(MFCC)法提取瓷砖敲击声的特征参数,再用高斯混合模型(GMM)法对MFCC特征参数进行分类和识别。试验结果表明,采用MFCC和GMM相结合的方法,可以对瓷砖空鼓情况进行有效识别,该方法具有良好的应用前景。 展开更多
关键词 声纹识别 梅尔倒谱系数 混合高斯模型
下载PDF
梅尔频率倒谱系数在声带息肉手术前后嗓音分析中的价值研究
3
作者 刘茉 葛鑫颖 +2 位作者 赵晓畅 郝青青 李祖飞 《中国耳鼻咽喉颅底外科杂志》 CAS CSCD 2024年第2期102-105,共4页
目的 本研究拟通过提取患者嗓音中的梅尔频率倒谱系数(MFCC)指标,探讨其在声带息肉手术前后嗓音分析中的临床价值。方法 回顾性分析于2018年1月—2019年8月行声带息肉手术且术前及术后1个月均行嗓音评估的患者41例,男31例,女10例;平均年... 目的 本研究拟通过提取患者嗓音中的梅尔频率倒谱系数(MFCC)指标,探讨其在声带息肉手术前后嗓音分析中的临床价值。方法 回顾性分析于2018年1月—2019年8月行声带息肉手术且术前及术后1个月均行嗓音评估的患者41例,男31例,女10例;平均年龄(42.9±11.4)岁。另选取无声嘶且无声带病变的正常受试者21例作为基线对照。使用基于Python编程语言的librosa语音处理包进行MFCC特征提取,分别提取每位患者的MFCC均值,MFCC方差与MFCC标准差,使用配对样本t检验比较声带息肉手术前后上述各MFCC特征的差异。结果 声带息肉患者术后MFCC均值1.25±1.01、MFCC方差561.34±154.98及MFCC标准差21.74±4.03比术前MFCC均值6.81±2.05、MFCC方差1 019.66±295.87及MFCC标准差34.37±6.63显著下降,差异具有统计学意义(t=18.596,P=0.000;t=10.338,P=0.000;t=11.852,P=0.000)。声带息肉组患者术后1个月其MFCC均值、MFCC方差及MFCC标准差与正常受试者相比差异均无统计学意义,表明绝大部分声带息肉患者术后嗓音得到良好的恢复。结论 本研究首次探索了MFCC在声带息肉手术前后嗓音分析中的价值,MFCC各特征可作为评估声带息肉术后嗓音恢复的指标。 展开更多
关键词 声带息肉 声嘶 梅尔频率倒谱系数 嗓音分析 手术
下载PDF
基于MFCC和随机森林的GIS动作声纹特征辨识和操作机构异常分类 被引量:1
4
作者 庄小亮 李乾坤 +3 位作者 秦秉东 张长虹 张柳健 张禄亮 《电机与控制应用》 2024年第3期10-20,共11页
针对气体绝缘金属封闭开关(GIS)设备的操作机构异常或故障而导致其开关动作时出现分合闸失败或不到位的问题,提出了一种基于梅尔频率倒谱系数(MFCC)和随机森林的GIS设备操作机构异常分类模型。首先,对采集到的声纹信号进行预处理,使用M... 针对气体绝缘金属封闭开关(GIS)设备的操作机构异常或故障而导致其开关动作时出现分合闸失败或不到位的问题,提出了一种基于梅尔频率倒谱系数(MFCC)和随机森林的GIS设备操作机构异常分类模型。首先,对采集到的声纹信号进行预处理,使用MFCC提取声纹信号的特征;然后,构建随机森林对提取的特征信息进行辨识,得到GIS动作异常的分类结果;最后,以某110 kV的GIS设备为例,采集断路器、隔离开关的储能机构和传动机构异常或故障时的声纹信号,构建了音频样本库,并对所提分类模型与多种经典模型进行了对比测试。结果表明,MFCC能够有效提取出不同工况下GIS动作的声纹信号特征,且随机森林在众多分类识别模型中表现最优,有效提高了GIS动作异常工况识别的准确率。 展开更多
关键词 GIS动作异常 操作机构 声纹特征辨识 梅尔倒谱系数 随机森林
下载PDF
基于声音特征的隧道衬砌空洞识别方法研究
5
作者 代晓景 暴学志 +2 位作者 柴雪松 周城光 阎兆立 《声学技术》 CSCD 北大核心 2024年第1期135-141,共7页
目前隧道衬砌空洞检测以人工敲击判断为主,检测过程中由于受到检测人员水平、注意力等主观因素影响,检测结果存在较大不确定性,因此有必要研制一种智能化的检测装置实现空洞自动识别。文章开展了衬砌空洞敲击回声智能识别算法研究,通过... 目前隧道衬砌空洞检测以人工敲击判断为主,检测过程中由于受到检测人员水平、注意力等主观因素影响,检测结果存在较大不确定性,因此有必要研制一种智能化的检测装置实现空洞自动识别。文章开展了衬砌空洞敲击回声智能识别算法研究,通过提取隧道衬砌冲击回波的梅尔倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)作为特征,针对敲击回声脉冲信号长度不一的特点,提出了变帧长MFCC优化算法,并面向小样本条件,建立了支持向量机(Support Vector Machine,SVM)的识别模型。试验结果表明,该模型对衬砌空洞识别准确率可达89.9%。 展开更多
关键词 隧道衬砌空洞 声学信号处理 梅尔倒谱系数(MFCC) 支持向量机(SVM)
下载PDF
基于改进MFCC算法的风力机叶片故障诊断方法 被引量:1
6
作者 张家安 田家辉 +2 位作者 王铁成 邓强 梁涛 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期285-290,共6页
针对传统声信号特征处理方法无法有效提取叶片声音特征、导致叶片故障诊断准确率低的问题,提出一种基于改进梅尔频率倒谱系数(MFCC)算法的风力机叶片故障诊断方法。首先采用快速傅里叶变换(FFT)分析不同风速下叶片声音信号和风噪的频率... 针对传统声信号特征处理方法无法有效提取叶片声音特征、导致叶片故障诊断准确率低的问题,提出一种基于改进梅尔频率倒谱系数(MFCC)算法的风力机叶片故障诊断方法。首先采用快速傅里叶变换(FFT)分析不同风速下叶片声音信号和风噪的频率特性,明确叶片声音信号的频率分布区域,将全频段分为三部分;然后采用粒子群优化算法(PSO)对梅尔(Mel)函数在不同频段上的敏感度进行优化,在迭代过程中将MFCC算法提取的叶片声音特征进行聚类,以轮廓系数作为适应度函数;最后基于支持向量机(SVM)构建分类器,实现风力机叶片故障的准确识别。以华北某风电场的叶片声音采集数据为算例,考察该算法在不同风速工况下的适应性,验证该方法的有效性。 展开更多
关键词 风力机叶片 声信号处理 故障诊断 特征提取 梅尔频率倒谱系数
下载PDF
基于音频特征的水车室工作状态异常检测 被引量:2
7
作者 曾广栋 魏学锋 +2 位作者 何林 孙长江 张旋 《水电能源科学》 北大核心 2024年第8期168-172,共5页
水电站的水车室包含轴承和顶盖等机械设备,受水力因素影响,水车室的异常工作会带来较大的安全隐患,基于大数据分析的精确维护对于水车室的可靠运行至关重要。针对水车室的异常工作状态,通过模型训练、特征工程和分类模型的开发等过程,采... 水电站的水车室包含轴承和顶盖等机械设备,受水力因素影响,水车室的异常工作会带来较大的安全隐患,基于大数据分析的精确维护对于水车室的可靠运行至关重要。针对水车室的异常工作状态,通过模型训练、特征工程和分类模型的开发等过程,采用STFT、Log-Mel、MFCC等方法对音频数据进行了预处理,建立了基于音频数据的异常检测模型,并对溪洛渡水电站水车室工作状态进行了异常检测。结果表明,Log-Mel方法具有有效性。研究结果不仅降低了异常检测的成本,还为水电机组的健康监测提供了参考。 展开更多
关键词 音频数据 水车室 STFT Log-Mel 梅尔频率倒频谱系数(MFCC) 时域特征 支持向量机
下载PDF
基于特征融合与注意力机制的鸟类声纹识别方法
8
作者 潘齐炜 程吉祥 +2 位作者 田甜 吴丹 曾蕊 《声学技术》 CSCD 北大核心 2024年第5期686-695,共10页
鸟类声纹识别技术是一种将经过预处理的多种鸟类声音作为输入,通过网络模型识别出相应鸟类的技术。针对真实环境下鸟类声纹识别中单一音频特征局限和模型学习特征能力不佳问题,文章提出了一种基于特征融合和注意力机制的鸟类声纹识别方... 鸟类声纹识别技术是一种将经过预处理的多种鸟类声音作为输入,通过网络模型识别出相应鸟类的技术。针对真实环境下鸟类声纹识别中单一音频特征局限和模型学习特征能力不佳问题,文章提出了一种基于特征融合和注意力机制的鸟类声纹识别方法。首先,在特征提取时分别获取梅尔频率倒谱系数和功率正则化倒谱系数,其次利用均值和方差归一化处理将两种特征融合得到新型融合特征参数MPFC;然后,以ResNet-50为主干网络在其残差模块中引入轻量化坐标注意力机制得到改进网络模型—坐标注意力残差网络;最后,将融合特征分别输入到坐标注意力残差网络(residual coordinate attention net, ResCA),ResNet-50、ResNeSt-50、DenseNet-121和EfficientNet-B0并在两个数据集Birdsdata和BirdCLEF上进行对比实验。实验结果表明,融合特征比单一特征有更好的表征能力,能够提高一定识别率,改进网络也具有较好的识别效果。 展开更多
关键词 鸟类声纹识别 特征融合 梅尔频率倒谱系数 功率正则化倒谱系
下载PDF
基于MFCC的碳纤维复合缠绕气瓶损伤声发射信号分析
9
作者 魏莱 龙飞飞 +1 位作者 杨可鑫 李沛莹 《无损检测》 CAS 2024年第4期53-58,共6页
针对碳纤维复合缠绕(CFPR)气瓶的损伤在线监测问题,对CFRP气瓶冲击损伤过程的声发射检测进行研究。以获取到的气瓶损伤声发射信号作为研究对象,通过梅尔倒谱系数(MFCC)特征提取方法,将原始信号转换为特征系数向量,将其参数值及变化趋势... 针对碳纤维复合缠绕(CFPR)气瓶的损伤在线监测问题,对CFRP气瓶冲击损伤过程的声发射检测进行研究。以获取到的气瓶损伤声发射信号作为研究对象,通过梅尔倒谱系数(MFCC)特征提取方法,将原始信号转换为特征系数向量,将其参数值及变化趋势进行同步比较。试验结果表明,不同损伤类型梅尔倒谱系数的分布呈现出明显的规律性。该研究结果可为CFPR材料的声发射检测信号识别提供一些参考。 展开更多
关键词 碳纤维复合缠绕气瓶 声发射 冲击 梅尔频率倒谱系数
下载PDF
基于基音频率的数字化音乐情感分类方法
10
作者 刘鹏 《自动化技术与应用》 2024年第7期158-162,共5页
为提升音乐分类准确率,提出基于基音频率的数字化音乐情感分类方法。其中通过添加滤波器对音乐信号进行预加重,引入帧移实施分帧处理,使用截断函数实施截断处理。基于多项式拟合设计AMDF基音频率检测算法,对预处理后的音乐信号进行数字... 为提升音乐分类准确率,提出基于基音频率的数字化音乐情感分类方法。其中通过添加滤波器对音乐信号进行预加重,引入帧移实施分帧处理,使用截断函数实施截断处理。基于多项式拟合设计AMDF基音频率检测算法,对预处理后的音乐信号进行数字化分析。提取Mel频率倒谱系数、线性预测倒谱系数、共振峰参数等特征参数。基于CNN-LSTM构建音乐情感分类模型,完成数字化音乐情感分类。实验结果表明,该方法在不同情感类别与不同帧移大小下,分类准确率均较高,误报率均较低,性能较好。 展开更多
关键词 特征提取 基音频率 滤波器 数字化音乐 MEL频率倒谱系数 情感分类
下载PDF
基于特征选择的方言辨别模型
11
作者 艾虎 李菲 《信息技术》 2024年第10期102-110,119,共10页
为了从语音样本中选择数量最少的相关特征变量,并让基于随机森林(RF)的贵州汉语方言辨别模型达到所需的精度。该研究采用基于随机森林的差异排序向后消除法(SDBE),利用Python 3.6,对贵州3个市县群的汉语方言语音样本进行特征选择,并与... 为了从语音样本中选择数量最少的相关特征变量,并让基于随机森林(RF)的贵州汉语方言辨别模型达到所需的精度。该研究采用基于随机森林的差异排序向后消除法(SDBE),利用Python 3.6,对贵州3个市县群的汉语方言语音样本进行特征选择,并与其他先进的特征选择方法进行比较,最后对随机森林分类模型进行改进。结果显示,该方法从39个特征变量中选取了8个最相关的梅尔频率倒谱系数(MFCC),显著优于与之比较的特征选择方法。经过改进的随机森林模型分类精确度为96.64%。该研究采用的特征选择算法和改进的随机森林模型,让方言辨别模型的性能得到显著提升。 展开更多
关键词 汉语方言辨识 梅尔频率倒谱系数 特征选择 随机森林 向后消除法
下载PDF
基于PANNs-CNN的环境声音分类算法研究及应用
12
作者 关志广 《无线互联科技》 2024年第16期12-15,共4页
环境声音分类(ESC)技术主要涉及声音特征提取和分类器算法的选择。为了探索最佳的特征提取方法和分类器组合,文章对深度学习模型PANNs-CNN进行了研究和分析,对不同的特征提取方法进行了实验对比。实验结果表明,在与同类模型对比中,选用... 环境声音分类(ESC)技术主要涉及声音特征提取和分类器算法的选择。为了探索最佳的特征提取方法和分类器组合,文章对深度学习模型PANNs-CNN进行了研究和分析,对不同的特征提取方法进行了实验对比。实验结果表明,在与同类模型对比中,选用预训练且更深层的CNN模型可以提高ESC的预测性能;Log-Mel特征可以更好地保留声音信号高维度特征及特征相关性,有助于提升模型分类准确率。文章研究的基于Log-Mel特征提取方式和PANNs-CNN 14的环境声音分类算法在ESC-50数据集上的分类准确率最好,并且在实际应用中验证了该算法的有效性。 展开更多
关键词 环境声音分类 预训练音频神经网络 卷积神经网络 Log-Mel MEL频率倒谱系数
下载PDF
羊咳嗽声的特征参数提取与识别方法 被引量:25
13
作者 宣传忠 武佩 +3 位作者 张丽娜 马彦华 张永安 邬娟 《农业机械学报》 EI CAS CSCD 北大核心 2016年第3期342-348,共7页
为在设施圈养羊只产生呼吸道疾病的初期,通过监测其咳嗽声进行疾病预警和健康状况诊断,以内蒙古地区广泛推广的杜泊羊为例,对杜泊羊的咳嗽声信号进行自动采集和计算机识别,在不增加羊咳嗽声特征参数维数的前提下,提出一种改进的梅尔频... 为在设施圈养羊只产生呼吸道疾病的初期,通过监测其咳嗽声进行疾病预警和健康状况诊断,以内蒙古地区广泛推广的杜泊羊为例,对杜泊羊的咳嗽声信号进行自动采集和计算机识别,在不增加羊咳嗽声特征参数维数的前提下,提出一种改进的梅尔频率倒谱系数(MFCC),试验结果表明,该参数和短时能量、过零率组合的14维特征参数,经过羊咳嗽声隐马尔可夫模型(HMM)识别系统,其识别率、误识别率和总识别率分别达到了86.23%、7.17%和88.43%,该组合特征参数经主成分分析可降到9维,而通过BP神经网络改善的HMM咳嗽声识别系统,对咳嗽声的识别率、误识别率和总识别率分别达到了92.54%、5.37%和95.04%,满足了杜泊羊咳嗽声识别的要求。 展开更多
关键词 杜泊羊 咳嗽声 特征参数提取 梅尔频率倒谱系数 隐马尔可夫模型
下载PDF
藏语孤立词语音识别技术研究 被引量:6
14
作者 赵尔平 王聪华 +1 位作者 党红恩 雒伟群 《西北师范大学学报(自然科学版)》 CAS 北大核心 2015年第5期50-54,共5页
针对藏语读音首先看后加字,然后根据元音的位置关系决定读音,而且元音比辅音携带更多听觉感知信息的特点,提出了一种改进的HTK系统藏语孤立词语音识别技术.在识别特征参数中,增加更能表征元音特征的共振峰参数提高语音识别的正确性,通... 针对藏语读音首先看后加字,然后根据元音的位置关系决定读音,而且元音比辅音携带更多听觉感知信息的特点,提出了一种改进的HTK系统藏语孤立词语音识别技术.在识别特征参数中,增加更能表征元音特征的共振峰参数提高语音识别的正确性,通过循环迭代方法提高语音训练速度,利用藏文字母拉丁转写方法解决藏文和语音识别系统编码不一致的问题.在二次开发的HTK平台进行实验,正确率达到92.83%,实验结果表明元音特征在藏语音识别中起到重要作用. 展开更多
关键词 藏语孤立词 共振峰 M el倒谱特征 循环迭代 隐马尔可夫模型 语音识别
下载PDF
基于改进MFCC和VQ的变压器声纹识别模型 被引量:84
15
作者 王丰华 王邵菁 +2 位作者 陈颂 袁国刚 张君 《中国电机工程学报》 EI CSCD 北大核心 2017年第5期1535-1542,共8页
为准确地获取变压器的噪声特性,该文提出了一种基于改进梅尔频率倒谱系数和矢量量化算法的变压器声纹识别模型。首先对变压器噪声信号进行分帧和加窗处理,然后综合运用加权处理法和主成分分析法对现有的MFCC特征向量提取算法进行改进,... 为准确地获取变压器的噪声特性,该文提出了一种基于改进梅尔频率倒谱系数和矢量量化算法的变压器声纹识别模型。首先对变压器噪声信号进行分帧和加窗处理,然后综合运用加权处理法和主成分分析法对现有的MFCC特征向量提取算法进行改进,进而基于VQ算法对变压器噪声信号进行识别。以某10k V变压器为对象进行空载试验,对不同铁芯松动下的噪声信号进行测试。计算结果表明,改进后的MFCC特征向量提取算法具有识别效率高和计算速度快的特点,所得到的MFCC特征向量能准确反映不同铁芯压紧程度下的变压器噪声特征,且基于VQ算法的识别结果与预设铁芯工况吻合良好。研究结果可为变压器结构优化设计及噪声治理提供依据。 展开更多
关键词 变压器 梅尔频谱倒谱系数 声纹识别 矢量量化 主成分分析 噪声
下载PDF
Mel频率下基于LPC的语音信号深度特征提取算法 被引量:12
16
作者 罗元 吴承军 +2 位作者 张毅 黎小松 席兵 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2016年第2期174-179,共6页
针对传统语音信号二次特征提取方法在保证识别率的前提下,实时性较差的问题,提出一种Mel频率下基于线性预测系数(linear predictive coefficient,LPC)的改进的语音信号深度特征提取算法。该方法根据人耳的听觉特性把LPC在Mel频率下进行... 针对传统语音信号二次特征提取方法在保证识别率的前提下,实时性较差的问题,提出一种Mel频率下基于线性预测系数(linear predictive coefficient,LPC)的改进的语音信号深度特征提取算法。该方法根据人耳的听觉特性把LPC在Mel频率下进行非线性变换,再进行微分、高阶微分和按比例重组等步骤,得到一种既考虑声道激励又兼顾人耳听觉的新特征参数,从而大大减少传统语音信号深度特征提取的计算量,在不影响识别效率的情况下,极大提高系统的实时性。最后,将该算法在智能轮椅平台进行有效性验证,大量实验表明,语音控制系统实时性差的问题在使用该算法后能够得到明显改善,该算法既保证了特征提取识别率,也有效地改善了系统的实时性。在一定程度上使语音控制智能轮椅更具实用性。 展开更多
关键词 语音识别 线性预测系数 MEL频率倒谱系数 Mel-LPC算法 深度特征提取
下载PDF
基于MFCC和GMM的个性音乐推荐模型 被引量:11
17
作者 牛滨 孔令志 +2 位作者 罗森林 潘丽敏 郭亮 《北京理工大学学报》 EI CAS CSCD 北大核心 2009年第4期351-355,共5页
提出一种基于Mel频率倒谱系数(MFCC)和高斯混合模型(GMM)的个性音乐推荐模型的建立方法.该方法采用MFCC技术提取歌曲的语音特征,并利用GMM算法生成该歌曲的模板,然后利用音乐模板库对音乐文件进行相似度计算.实验结果表明,利用该模型为... 提出一种基于Mel频率倒谱系数(MFCC)和高斯混合模型(GMM)的个性音乐推荐模型的建立方法.该方法采用MFCC技术提取歌曲的语音特征,并利用GMM算法生成该歌曲的模板,然后利用音乐模板库对音乐文件进行相似度计算.实验结果表明,利用该模型为用户推荐的歌曲平均准确率为90%. 展开更多
关键词 音乐推荐 MEL频率倒谱系数 高斯混合模型
下载PDF
两种倒谱特征提取技术在水声目标识别中的应用 被引量:11
18
作者 柳革命 孙超 杨益新 《西北工业大学学报》 EI CAS CSCD 北大核心 2008年第3期276-281,共6页
按照声纳员的感受,被动声纳目标被看作为一个发声体,目标噪声信号表示为激励噪声源与发声体冲激响应的卷积,在这一模型下,使用倒谱分析水声目标噪声的时域特征。提出利用线性预测倒谱和考虑人耳听觉特点的美尔倒谱分析发声体的冲激响应... 按照声纳员的感受,被动声纳目标被看作为一个发声体,目标噪声信号表示为激励噪声源与发声体冲激响应的卷积,在这一模型下,使用倒谱分析水声目标噪声的时域特征。提出利用线性预测倒谱和考虑人耳听觉特点的美尔倒谱分析发声体的冲激响应在倒谱域中的表示,据此对水声噪声信号提取这两种倒谱的特征,进行分类识别。设计了神经网络分类器,利用实测数据对三类目标进行分类。分析比较两种方法的分类结果,验证了基于倒谱的水声目标特征提取方法的可行性。 展开更多
关键词 被动声纳目标识别 线性预测(LPC)倒谱 美尔(Mel)倒谱 特征提取
下载PDF
一种基于MFCC和LPCC的文本相关说话人识别方法 被引量:14
19
作者 于明 袁玉倩 +1 位作者 董浩 王哲 《计算机应用》 CSCD 北大核心 2006年第4期883-885,共3页
在说话人识别的建模过程中,为传统矢量量化模型的码字增加了方差分量,形成了一种新的连续码字分布的矢量量化模型。同时采用美尔倒谱系数及其差分和线性预测倒谱系数及其差分相结合作为识别的特征参数,来进行与文本有关的说话人识别。... 在说话人识别的建模过程中,为传统矢量量化模型的码字增加了方差分量,形成了一种新的连续码字分布的矢量量化模型。同时采用美尔倒谱系数及其差分和线性预测倒谱系数及其差分相结合作为识别的特征参数,来进行与文本有关的说话人识别。通过与动态时间规整算法和传统的矢量量化方法进行比较表明,在系统响应时间并未明显增加的基础上,该模型识别率有一定提高。 展开更多
关键词 说话人识别 线性预测倒谱系数 美尔倒谱系数 矢量量化 动态时间规整
下载PDF
基于Fisher线性判别分析的语音信号端点检测方法 被引量:20
20
作者 王明合 张二华 +1 位作者 唐振民 许昊 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1343-1349,共7页
传统的语音端点检测方法对辅音,特别是受到噪声污染的清音部分与背景噪声之间分离能力不足。针对上述问题,该文提出一种基于Fisher线性判别分析的梅尔频率倒谱系数(F-MFCC)端点检测方法。将清音信号和背景噪声视为两类分类问题,采用Fis... 传统的语音端点检测方法对辅音,特别是受到噪声污染的清音部分与背景噪声之间分离能力不足。针对上述问题,该文提出一种基于Fisher线性判别分析的梅尔频率倒谱系数(F-MFCC)端点检测方法。将清音信号和背景噪声视为两类分类问题,采用Fisher准则求解具有判别信息的最佳投影方向,使得投影后的特征参数具有最小类内散度和最大类间散度,从而增大清音与背景噪声的可分离性。在不同语音库上的实验结果表明,F-MFCC能够在不同信噪比和背景噪声条件下提高语音端点检测的准确率。 展开更多
关键词 语音处理 语音端点检测 梅尔频率倒谱系数 FISHER线性判别分析
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部