期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Pd nanoparticles embedded in N-Enriched MOF-Derived architectures for efficient oxygen reduction reaction in alkaline media
1
作者 Daqiang Yan Lin Zhang +3 位作者 Lei Shen Runyu Hu Weiping Xiao Xiaofei Yang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1205-1215,共11页
Developing high efficient Pd-based electrocatalysts for oxygen reduction reaction(ORR) is still challenging for alkaline membrane fuel cell,since the strong oxygen adsorption energy and easy agglomerative intrinsic pr... Developing high efficient Pd-based electrocatalysts for oxygen reduction reaction(ORR) is still challenging for alkaline membrane fuel cell,since the strong oxygen adsorption energy and easy agglomerative intrinsic properties. In order to simultaneously solve these problems, Pd/Co_(3)O_(4)–N–C multidimensional materials with porous structures is designed as the ORR catalysts. In details, the ZIF-67 with polyhedral structure was firstly synthesized and then annealed at high-temperature to prepare the N-doped Co_(3)O_(4)carbon-based material, which was used to homogeneously confine Pd nanoparticles and obtained the Pd/Co_(3)O_(4)–N–C series catalysts. The formation of Co–N and C–N bond could provide efficient active sites for ORR. Simultaneously, the strong electronic interaction in the interface between the Pd and N-doped Co_(3)O_(4)could disperse and avoid the agglomeration of Pd nanoparticles and ensure the exposure of active sites, which is crucial to lower the energy barrier toward ORR and substantially enhance the ORR kinetics. Hence, the Pd/Co_(3)O_(4)–N–C nanocompounds exhibited excellent ORR catalytic performance, ideal Pd mass activity, and durability in 0.1 mol L-1KOH solution compared with Co_(3)O_(4)–N–C and Pd/C. The scalable synthesis method, relatively low cost, and excellent electrochemical ORR performance indicated that the obtained Pd/Co_(3)O_(4)–N–C electrocatalyst had the potential for application on fuel cells. 展开更多
关键词 oxygen reduction reaction ELECTROCATALYSIS Pd/Co_(3)O_(4)–n–C Carbon-based materials Co–n and C–n bond
下载PDF
氮掺杂碳纳米管负载Co_(3)O_(4)氧还原电催化剂的制备与性能
2
作者 贾海浪 李红城 +2 位作者 吉鹏程 滕洋 关明云 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第4期693-700,共8页
以碳纳米管(CNT)为原料,通过负载维生素B12,简单热解得到了一种氮掺杂碳纳米管(N/CNT)负载低含量Co_(3)O_(4)纳米颗粒的氧还原电催化剂(Co_(3)O_(4)@N/CNT)。得益于均匀分散的Co_(3)O_(4)纳米颗粒以及氮掺杂,Co_(3)O_(4)@N/CNT表现出了... 以碳纳米管(CNT)为原料,通过负载维生素B12,简单热解得到了一种氮掺杂碳纳米管(N/CNT)负载低含量Co_(3)O_(4)纳米颗粒的氧还原电催化剂(Co_(3)O_(4)@N/CNT)。得益于均匀分散的Co_(3)O_(4)纳米颗粒以及氮掺杂,Co_(3)O_(4)@N/CNT表现出了优异的氧还原催化性能,其半波电位达到了0.844 V(vs RHE),超越了商业Pt/C(0.820 V(vs RHE))。与Pt/C相比,基于Co_(3)O_(4)@N/CNT组装的锌-空气电池表现出了更优的放电性能和循环稳定性。 展开更多
关键词 氧还原反应 碳纳米管 氮掺杂 Co_(3)O_(4)
下载PDF
N‐doped porous carbon nanofibers inlaid with hollow Co_(3)O_(4) nanoparticles as an efficient bifunctional catalyst for rechargeable Li‐O_(2) batteries 被引量:1
3
作者 Hongbin Chen Yaqian Ye +4 位作者 Xinzhi Chen Lili Zhang Guoxue Liu Suqing Wang Liang‐Xin Ding 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第6期1511-1519,共9页
Stable and high‐efficiency bifunctional catalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desired for the practical application of Li‐O_(2)batteries with excellent rate performanc... Stable and high‐efficiency bifunctional catalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desired for the practical application of Li‐O_(2)batteries with excellent rate performance and cycle stability.Herein,a novel hybrid bifunctional catalyst with carbon nanofibers inlaid with hollow Co_(3)O_(4)nanoparticles and separate active sites for ORR and OER were prepared and applied in Li‐O_(2)batteries.Benefiting from the synergistic effect of unique porous structural features and high electrocatalytic activity of hollow Co3O4 intimately bound to N‐doped carbon nanofibers,the assembled Li‐O_(2)batteries with novel catalyst exhibited high specific capacity,excellent rate capability,and cycle stability up to 150 cycles under a capacity limitation of 500 mAh g^(–1)at a current density of 100 mA g^(–1).The facile synthesis and preliminary results in this work show the as‐prepared catalyst as a promising bifunctional electrocatalyst for applications in metal‐air batteries,fuel cells,and electrocatalysis. 展开更多
关键词 Li‐O_(2)batteries Bifunctional catalyst Co_(3)O_(4) n‐doped carbon nanofibers oxygen reduction reaction oxygen evolution reaction
下载PDF
2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries 被引量:12
4
作者 Yanqiang Li Huiyong Huang +3 位作者 Siru Chen Xin Yu Chao Wang Tingli Ma 《Nano Research》 SCIE EI CAS CSCD 2019年第11期2774-2780,共7页
Designing a highly efficient non-precious based oxygen reduction reaction(ORR)electrocatalyst is critical for the commercialization of various sustainable energy storage and conversion devices such as metal-air batter... Designing a highly efficient non-precious based oxygen reduction reaction(ORR)electrocatalyst is critical for the commercialization of various sustainable energy storage and conversion devices such as metal-air batteries and fuel cells.Herein,we report a convenient strategy to synthesis Fe3O4 embedded in N doped hollow carbon sphere(NHCS)for ORR.What's interesting is that the carbon microsphere is composed of two-dimensional(2D)nanoplate that could provide more exposed active sites.The usage of solid ZnO nanowires as zinc source is crucial to obtain this structure.The Fe3O4@NHCS-2 exhibits better catalytic activity and durability than the commercial PtC catalyst.Moreover,it further displays high-performance of Zn-air batteries as a cathode electrocatalyst with a high-power density of 133 mW·cm^-2 and high specific capacity of 701 mA·h·g^-1.The special hollow structure composed 2D nanoplate,high surface area,as well as synergistic effect between the high active Fe3O4 nanoparticles and N-doped matrix endows this outstanding catalytic activity.The work presented here can be easily extended to prepare metal compounds decorated carbon nanomaterials with special structure for a broad range of energy storage and conversion devices. 展开更多
关键词 oxygen reduction reaction Zn-air battery FE3O4 n doping hollow microsphere
原文传递
Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4 被引量:13
5
作者 Qian Li Songcan Wang +5 位作者 Zhuxing Sun Qijun Tang Yiqiu Liu Lianzhou Wang Haiqiang Wang Zhongbiao Wu 《Nano Research》 SCIE EI CAS CSCD 2019年第11期2749-2759,共11页
Graphitic carbon nitride(g-C3N4,CN)exhibits inefficient charge separation,deficient CO2 adsorption and activation sites,and sluggish surface reaction kinetics,which have been recognized as the main barriers to its app... Graphitic carbon nitride(g-C3N4,CN)exhibits inefficient charge separation,deficient CO2 adsorption and activation sites,and sluggish surface reaction kinetics,which have been recognized as the main barriers to its application in CO2 photocatalytic reduction.In this work,carbon quantum dot(CQD)decoration and oxygen atom doping were applied to CN by a facile one-step hydrothermal method.The incorporated CQDs not only facilitate charge transfer and separation,but also provide alternative CO2 adsorption and activation sites.Further,the oxygen-atom-doped CN(OCN),in which oxygen doping is accompanied by the formation of nitrogen defects,proves to be a sustainable H^+ provider by facilitating the water dissociation and oxidation half-reactions.Because of the synergistic effect of the hybridized binary CQDs/OCN addressing the three challenging issues of the CN based materials,the performance of CO2 photocatalytic conversion to CH4 over CQDs/OCN-x(x represents the volume ratio of laboratory-used H2O2(30 wt.%)in the mixed solution)is dramatically improved by 11 times at least.The hybrid photocatalyst design and mechanism proposed in this work could inspire more rational design and fabrication of effective photocatalysts for CO2 photocatalytic conversion with a high CH4 selectivity. 展开更多
关键词 photocalytic CO2 reduction graphitic carbon nitride(g-C3n4) carbon quantum dot oxygen doping
原文传递
Sonochemical Synthesis of Two Dimensional C3N4 Nanosheets Supported Palladium Composites and Their Electrocatalytic Activity for Oxygen Reduction and Methanol Oxidation Reaction 被引量:1
6
作者 Lingxia Zuo Liping Jiang Jun-Jie Zhu 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2017年第6期969-976,共8页
The preparation of highly active electrocatalysts with good durability and low cost for fuel cells is highly desir- able but still remains a significant challenge. Here we synthesized two dimensional (2D) C3N4 nanos... The preparation of highly active electrocatalysts with good durability and low cost for fuel cells is highly desir- able but still remains a significant challenge. Here we synthesized two dimensional (2D) C3N4 nanosheets supported palladium composites (C3N4/Pd) via a simple and convenient sonochemical approach. We have systematically stud- ied the electrocatalytic performance of as-prepared catalysts. We found that the prepared C3N4/Pd composites pos- sessed excellent catalytic activity and stability for oxygen reduction reaction (ORR) in alkaline media. Encourag- ingly, the C3N4/Pd catalysts exhibit the excellent electrocatalytic activity for methanol oxidation reaction (MOR) in alkaline media, even better than that of the commercial Pt/C catalyst, The excellent electrocatalytic performance of the 2D C3N4 nanosheets supported palladium composites catalysts results from their synergy effect between the ul- trathin substrate material with large surface area and excellent dispersion of palladium nanoparticles. This study demonstrates that sonochemical method opens up a new avenue for the preparation of electrocatalysts for fuel cells. We expect these materials are likely to find uses in a broad range of applications, for example, fuel cells, solar cells, batteries and other electrochemical analysis. 展开更多
关键词 sonochemical method C3n4/Pd oxygen reduction reaction methanol oxidation reaction
原文传递
Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction 被引量:18
7
作者 He-Sheng Zhai Lei Cao Xing-Hua Xia 《Chinese Chemical Letters》 SCIE CAS CSCD 2013年第2期103-106,共4页
Received 2 December 2012 Received in revised form 26 December 2012 Accepted 31 December 2012 Available online 4 February 2013
关键词 melamineg-c3n4oxygen reduction reactionelectrocatalysis
原文传递
Introducing B–N unit boosts photocatalytic H_(2)O_(2) production on metal-free g-C_(3)N_(4)nanosheets 被引量:3
8
作者 Weikang Wang Wei Zhang +6 位作者 Yueji Cai Qing Wang Juan Deng Jingsheng Chen Zhifeng Jiang Yizhou Zhang Chao Yu 《Nano Research》 SCIE EI CSCD 2023年第2期2177-2184,共8页
Metal-free catalyst for photocatalytic production of H_(2)O_(2)is highly desirable with the long-term vision of artificial photosynthesis of solar fuel.In particular,the specific chemical bonds for selective H_(2)O_(2... Metal-free catalyst for photocatalytic production of H_(2)O_(2)is highly desirable with the long-term vision of artificial photosynthesis of solar fuel.In particular,the specific chemical bonds for selective H_(2)O_(2)photosynthesis via 2e–oxygen reduction reactions(ORR)remain to be explored for understanding the forming mechanism of active sites.Herein,we report a facile doping method to introduce boron-nitrogen(B–N)bonds into the structure of graphitic carbon nitride(g-C_(3)N_(4))nanosheets(denoted as BCNNS)to provide significant photocatalytic activity,selectivity and stability.The theoretical calculation and experimental results reveal that the electron-deficient B–N units serving as electron acceptors improve photogenerated charge separation and transfer.The units are also proved to be superior active sites for selective O_(2)adsorption and activation,reducing the energy barrier for*OOH formation,and thereby enabling an efficient 2e–ORR pathway to H_(2)O_(2).Consequently,with only bare loss of activity during repeated cycles,the optimal H2O2 production rate by BCNNS photocatalysts reaches 1.16 mmol·L^(–1)·h^(–1)under 365 nm-monochrome light emitting diode(LED365nm)irradiation,increasing nearly 2–5 times as against the state-of-art metal-free photocatalysts.This work gives the first example of applying B–N bonds to enhance the photocatalytic H_(2)O_(2)production as well as unveiling the underlying reaction pathway for efficient solar-energy transformations. 展开更多
关键词 graphitic carbon nitride(g-C_(3)n_(4))nanosheets metal-free photocatalyst B–n bonds oxygen reduction reaction H2O2 production
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部