Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ...Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.展开更多
There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 poly...There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids,such as docosahexaenoic acid,and exercise in Parkinson’s disease,we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway.First,mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation.Four weeks after lesion,animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks.During this period,the animals had access to a running wheel,which they could use or not.Docosahexaenoic acid treatment,voluntary exercise,or the combination of both had no effect on(i)distance traveled in the open field test,(ii)the percentage of contraversive rotations in the apomorphine-induction test or(iii)the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta.However,the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum.Compared to docosahexaenoic acid treatment or exercise alone,the combination of docosahexaenoic acid and exercise(i)improved forelimb balance in the stepping test,(ii)decreased the striatal DOPAC/dopamine ratio and(iii)led to increased dopamine transporter levels in the lesioned striatum.The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson’s disease.展开更多
Proteolytic cleavage of tau by asparagine endopeptidase(AEP)creates tau-N368 fragments,which may drive the pathophysiology associated with synaptic dysfunction and memory deterioration in the brain of Alzheimer’s dis...Proteolytic cleavage of tau by asparagine endopeptidase(AEP)creates tau-N368 fragments,which may drive the pathophysiology associated with synaptic dysfunction and memory deterioration in the brain of Alzheimer’s disease patients.Nonetheless,the molecular mechanisms of truncated tau-induced cognitive deficits remain unclear.Evidence suggests that signal transduction and activator of transcription-3(STAT3)is associated with modulating synaptic plasticity,cell apoptosis,and cognitive function.Using luciferase reporter assays,electrophoretic mobility shift assays,western blotting,and immunofluorescence,we found that human tau-N368 accumulation inhibited STAT3 activity by suppressing STAT3 translocation into the nucleus.Overexpression of STAT3 improved tau-N368-induced synaptic deficits and reduced neuronal loss,thereby improving the cognitive deficits in tau-N368 mice.Moreover,in tau-N368 mice,activation of STAT3 increased N-methyl-D-aspartic acid receptor levels,decreased Bcl-2 levels,reversed synaptic damage and neuronal loss,and thereby alleviated cognitive deficits caused by tau-N368.Taken together,STAT3 plays a critical role in truncated tau-related neuropathological changes.This indicates a new mechanism behind the effect of tau-N368 on synapses and memory deficits.STAT3 can be used as a new molecular target to treat tau-N368-induced protein pathology.展开更多
Staphylococcus aureus is a gram-staining positive cocci bacillus baterium and also one of the foodborne pathogens, which is a serious potential hazard to human health and food safety. We constructed an electroche...Staphylococcus aureus is a gram-staining positive cocci bacillus baterium and also one of the foodborne pathogens, which is a serious potential hazard to human health and food safety. We constructed an electrochemical biosensor for the detection of S. aureus based on nucleic acid aptamers to achieve highly specific detection of S. aureus. The detection of S. aureus was realized by using Aptamer (Apt) to capture S. aureus, which resulted in a change in the spatial conformation of Apt and a decrease in the electrochemical signal. Under the optimized experimental conditions, the detected electrochemical signals were positively correlated with the concentration of S. aureus with a linear range of 1 × 10<sup>1</sup> - 1 × 10<sup>5</sup> CFU/mL, a detection limit of 4.76 CFU/mL, and an experimental recovery of 97.43% - 99.37%. Therefore, we successfully constructed an electrochemical biosensor for the specific detection of S. aureus, which has the advantages of high specificity, sensitive detection and convenient operation.展开更多
Background Antimicrobial alternatives are urgently needed,including for poultry production systems.In this study,we tested the potential broad-range antimicrobial alternative peracetic acid,delivered in feed via the h...Background Antimicrobial alternatives are urgently needed,including for poultry production systems.In this study,we tested the potential broad-range antimicrobial alternative peracetic acid,delivered in feed via the hydrolysis of encapsulated precursors through a 28-day study using 375 Ross 308 broiler chickens.We tested two peracetic acid concentrations,30 and 80 mg/kg on birds housed on re-used litter,and we evaluated the impact of both levels on gut microbial communities,bacterial concentration,antimicrobial resistance genes relative abundance and growth performance when compared to control birds housed on either clean or re-used litter.Results Body weight gain and feed conversion ratio improved in peracetic acid fed birds.At d 28,birds given 30 mg/kg of peracetic acid had a decreased Firmicutes and an increased Proteobacteria abundance in the jejunum,accompanied by an increase in Bacillus,Flavonifractor and Rombustia in the caeca,and a decreased abundance of tetracycline resistance genes.Chicken given 80 mg/kg of peracetic acid had greater caecal abundance of macrolides lincosamides and streptogramins resistance genes.Growth performance on clean litter was reduced compared to reused litter,which concurred with increased caecal abundance of Blautia,decreased caecal abundance of Escherichia/Shigella,Anaerostipes and Jeotgalicoccus,and greater gene abundance of vancomycin,tetracycline,and macrolides resistance genes.Conclusions Peracetic acid could be used as a safe broad-spectrum antimicrobial alternative in broilers.Encapsulated precursors were able to reduce the bacterial concentration in the jejunum whilst promoting the proliferation of probiotic genera in the caeca,especially at the low peracetic acid concentrations tested,and improve growth performance.Moreover,our findings offer further insights on potential benefits of rearing birds on re-used litter,suggesting that the latter could be associated with better performance and reduced antimicrobial resistance risk compared to clean litter rearing.展开更多
Here,a new integrated machine learning and Chou’s pseudo amino acid composition method has been proposed for in silico epitope mapping of severe acute respiratorysyndrome-like coronavirus antigens.For this,a training...Here,a new integrated machine learning and Chou’s pseudo amino acid composition method has been proposed for in silico epitope mapping of severe acute respiratorysyndrome-like coronavirus antigens.For this,a training dataset including 266 linear B-cell epitopes,1,267 T-cell epitopes and 1,280 non-epitopes were prepared.The epitope sequences were then converted to numerical vectors using Chou’s pseudo amino acid composition method.The vectors were then introduced to the support vector machine,random forest,artificial neural network,and K-nearest neighbor algorithms for the classification process.The algorithm with the highest performance was selected for the epitope mapping procedure.Based on the obtained results,the random forest algorithm was the most accurate classifier with an accuracy of 0.934 followed by K-nearest neighbor,artificial neural network,and support vector machine respectively.Furthermore,the efficacies of predicted epitopes by the trained random forest algorithm were assessed through their antigenicity potential as well as affinity to human B cell receptor and MHC-I/II alleles using the VaxiJen score and molecular docking,respectively.It was also clear that the predicted epitopes especially the B-cell epitopes had high antigenicity potentials and good affinities to the protein targets.According to the results,the suggested method can be considered for developing specific epitope predictor software as well as an accelerator pipeline for designing serotype independent vaccine against the virus.展开更多
Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(te...Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs.展开更多
Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite has been synthesized through electrochemical method and characterized by UV-Visible spectroscopy, XRD, SEM and EDAX data. U...Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite has been synthesized through electrochemical method and characterized by UV-Visible spectroscopy, XRD, SEM and EDAX data. UV-Visible spectroscopy measurements reveal that the Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite has maximum absorption at 353.04 nm and this peak position reflects the band gap of particles and it is found to be 2.51 eV which was calculated using Tauc plot. X-Ray diffraction (XRD) reveals crystaline size to be 49.85 nm which was calculated using Williamson-Hall (W-H) plot method. Photocatalytic degradation of acetic acid, chloroacetic acid and trichloroacetic acid has been studied by volumetric method using NaOH solution. Photocatalytic degradation of chloroacetic acid and acetic acid follows first order kinetics. The photodegradation efficiency for Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite was found to be ≈97.8%. A Taft linear free energy relationship is noted for the catalysed reaction with ρ* = 0.233 and indicating electron withdrawing groups enhance the rate. An isokinetic relation is observed with β = 358 K indicating that enthalpy factor controls the reaction rate. The result of this paper suggests the possibility of degradation of organic compounds, industrial effluants and toxic organic compounds by photodegradation process by ecofriendly Al<sub>2</sub>S<sub>3</sub>/ MoS<sub>2</sub>. The antibacterial activity of Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite was investigated. These particles were shown to have an effective bactericide.展开更多
BACKGROUND Lingguizhugan(LGZG)decoction is a widely used classic Chinese medicine formula that was recently shown to improve high-fat diet(HFD)-induced insulin resistance(IR)in animal studies.AIM To assess the therape...BACKGROUND Lingguizhugan(LGZG)decoction is a widely used classic Chinese medicine formula that was recently shown to improve high-fat diet(HFD)-induced insulin resistance(IR)in animal studies.AIM To assess the therapeutic effect of LGZG decoction on HFD-induced IR and explore the potential underlying mechanism.METHODS To establish an IR rat model,a 12-wk HFD was administered,followed by a 4-wk treatment with LGZG.The determination of IR status was achieved through the use of biochemical tests and oral glucose tolerance tests.Using a targeted metabolomics platform to analyze changes in serum metabolites,quantitative real-time PCR(qRT-PCR)was used to assess the gene expression of the ribosomal protein S6 kinase beta 1(S6K1).RESULTS In IR rats,LGZG decreased body weight and indices of hepatic steatosis.It effectively controlled blood glucose and food intake while protecting islet cells.Metabolite analysis revealed significant differences between the HFD and HFDLGZG groups.LGZG intervention reduced branched-chain amino acid levels.Levels of IR-related metabolites such as tryptophan,alanine,taurine,and asparagine decreased significantly.IR may be linked to amino acids due to the contemporaneous increase in S6K1 expression,as shown by qRT-PCR.CONCLUSIONS Our study strongly suggests that LGZG decoction reduces HFD-induced IR.LGZG may activate S6K1 via metabolic pathways.These findings lay the groundwork for the potential of LGZG as an IR treatment.展开更多
Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is k...Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is known about the long-term stability of these biomarker proteins in plasma samples stored at-80°C.We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort.Plasma samples from 229 cognitively unimpaired individuals,encompassing healthy controls and those experiencing subjective cognitive decline,as well as 99 patients with cognitive impairment,comprising those with mild cognitive impairment and dementia,were acquired from the Sino Longitudinal Study on Cognitive Decline project.These samples were stored at-80°C for up to 6 years before being used in this study.Our results showed that plasma levels of Aβ42,Aβ40,neurofilament light chain,and glial fibrillary acidic protein were not significantly correlated with sample storage time.However,the level of total tau showed a negative correlation with sample storage time.Notably,in individuals without cognitive impairment,plasma levels of total protein and tau phosphorylated protein threonine 181(p-tau181)also showed a negative correlation with sample storage time.This was not observed in individuals with cognitive impairment.Consequently,we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time.Therefore,caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases,such as Alzheimer's disease.Furthermore,in cohort studies,it is important to consider the impact of storage time on the overall results.展开更多
Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism....Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.展开更多
The coronavirus disease 2019(COVID-19)mortality rate in 55 African countries is almost 4.5 times lower than in the coronavirus disease 2019(COVID-19)despite Africa having over 4.2 times more people.This mortality para...The coronavirus disease 2019(COVID-19)mortality rate in 55 African countries is almost 4.5 times lower than in the coronavirus disease 2019(COVID-19)despite Africa having over 4.2 times more people.This mortality paradox is also evident when comparing Nigeria,a heavily populated,poorly vaccinated and weakly mandated country to Israel,a small,highly vaccinated and strictly mandated country.Nigeria has almost 4 times lower COVID mortality than Israel.In this Field of Vision perspective,I explain how this paradox has evolved drawing upon my academic,clinical and social experience.Since April 2020,I’ve developed and been using the Egyptian immune-modulatory Kelleni’s protocol to manage COVID-19 patients including pediatric,geriatric,pregnant,immune-compromised and other individuals suffering from multiple comorbidities.It’s unfortunate that severe acute respiratory syndrome coronavirus 2 is still evolving accompanied by more deaths.However in Africa,we’ve been able to live without anxiety or mandates throughout the pandemic because we trust science and adopted early treatment using safe,and effective repurposed drugs that have saved the majority of COVID-19 patients.This article represents an African and Egyptian tale of honor.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1605000)National Natural Science Foundation of China(Grant No.31871806)the Beijing Livestock Industry Innovation Team(BAIC05-2023)。
文摘Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.
基金supported by funding from Parkinson Canadafunded by a scholarship from Parkinson Canadaa scholarship from Fonds d’Enseignement et de Recherche (FER) (Faculty of Pharmacy, Université Laval)
文摘There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids,such as docosahexaenoic acid,and exercise in Parkinson’s disease,we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway.First,mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation.Four weeks after lesion,animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks.During this period,the animals had access to a running wheel,which they could use or not.Docosahexaenoic acid treatment,voluntary exercise,or the combination of both had no effect on(i)distance traveled in the open field test,(ii)the percentage of contraversive rotations in the apomorphine-induction test or(iii)the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta.However,the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum.Compared to docosahexaenoic acid treatment or exercise alone,the combination of docosahexaenoic acid and exercise(i)improved forelimb balance in the stepping test,(ii)decreased the striatal DOPAC/dopamine ratio and(iii)led to increased dopamine transporter levels in the lesioned striatum.The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson’s disease.
基金supported in parts by the National Natural Science Foundation of China,Nos.82101501(to QF),and 82201589(to XH)。
文摘Proteolytic cleavage of tau by asparagine endopeptidase(AEP)creates tau-N368 fragments,which may drive the pathophysiology associated with synaptic dysfunction and memory deterioration in the brain of Alzheimer’s disease patients.Nonetheless,the molecular mechanisms of truncated tau-induced cognitive deficits remain unclear.Evidence suggests that signal transduction and activator of transcription-3(STAT3)is associated with modulating synaptic plasticity,cell apoptosis,and cognitive function.Using luciferase reporter assays,electrophoretic mobility shift assays,western blotting,and immunofluorescence,we found that human tau-N368 accumulation inhibited STAT3 activity by suppressing STAT3 translocation into the nucleus.Overexpression of STAT3 improved tau-N368-induced synaptic deficits and reduced neuronal loss,thereby improving the cognitive deficits in tau-N368 mice.Moreover,in tau-N368 mice,activation of STAT3 increased N-methyl-D-aspartic acid receptor levels,decreased Bcl-2 levels,reversed synaptic damage and neuronal loss,and thereby alleviated cognitive deficits caused by tau-N368.Taken together,STAT3 plays a critical role in truncated tau-related neuropathological changes.This indicates a new mechanism behind the effect of tau-N368 on synapses and memory deficits.STAT3 can be used as a new molecular target to treat tau-N368-induced protein pathology.
文摘Staphylococcus aureus is a gram-staining positive cocci bacillus baterium and also one of the foodborne pathogens, which is a serious potential hazard to human health and food safety. We constructed an electrochemical biosensor for the detection of S. aureus based on nucleic acid aptamers to achieve highly specific detection of S. aureus. The detection of S. aureus was realized by using Aptamer (Apt) to capture S. aureus, which resulted in a change in the spatial conformation of Apt and a decrease in the electrochemical signal. Under the optimized experimental conditions, the detected electrochemical signals were positively correlated with the concentration of S. aureus with a linear range of 1 × 10<sup>1</sup> - 1 × 10<sup>5</sup> CFU/mL, a detection limit of 4.76 CFU/mL, and an experimental recovery of 97.43% - 99.37%. Therefore, we successfully constructed an electrochemical biosensor for the specific detection of S. aureus, which has the advantages of high specificity, sensitive detection and convenient operation.
基金funded by the UK Department of Health and Social Care as part of the Global AMR Innovation Fund(GAMRIF,Project 104990)supports early-stage innovative research in underfunded areas of antimicrobial resistance(AMR)research and development for the benefit of those in low-and middle-income countries(LMICs),who bear the greatest burden of AMR.
文摘Background Antimicrobial alternatives are urgently needed,including for poultry production systems.In this study,we tested the potential broad-range antimicrobial alternative peracetic acid,delivered in feed via the hydrolysis of encapsulated precursors through a 28-day study using 375 Ross 308 broiler chickens.We tested two peracetic acid concentrations,30 and 80 mg/kg on birds housed on re-used litter,and we evaluated the impact of both levels on gut microbial communities,bacterial concentration,antimicrobial resistance genes relative abundance and growth performance when compared to control birds housed on either clean or re-used litter.Results Body weight gain and feed conversion ratio improved in peracetic acid fed birds.At d 28,birds given 30 mg/kg of peracetic acid had a decreased Firmicutes and an increased Proteobacteria abundance in the jejunum,accompanied by an increase in Bacillus,Flavonifractor and Rombustia in the caeca,and a decreased abundance of tetracycline resistance genes.Chicken given 80 mg/kg of peracetic acid had greater caecal abundance of macrolides lincosamides and streptogramins resistance genes.Growth performance on clean litter was reduced compared to reused litter,which concurred with increased caecal abundance of Blautia,decreased caecal abundance of Escherichia/Shigella,Anaerostipes and Jeotgalicoccus,and greater gene abundance of vancomycin,tetracycline,and macrolides resistance genes.Conclusions Peracetic acid could be used as a safe broad-spectrum antimicrobial alternative in broilers.Encapsulated precursors were able to reduce the bacterial concentration in the jejunum whilst promoting the proliferation of probiotic genera in the caeca,especially at the low peracetic acid concentrations tested,and improve growth performance.Moreover,our findings offer further insights on potential benefits of rearing birds on re-used litter,suggesting that the latter could be associated with better performance and reduced antimicrobial resistance risk compared to clean litter rearing.
文摘Here,a new integrated machine learning and Chou’s pseudo amino acid composition method has been proposed for in silico epitope mapping of severe acute respiratorysyndrome-like coronavirus antigens.For this,a training dataset including 266 linear B-cell epitopes,1,267 T-cell epitopes and 1,280 non-epitopes were prepared.The epitope sequences were then converted to numerical vectors using Chou’s pseudo amino acid composition method.The vectors were then introduced to the support vector machine,random forest,artificial neural network,and K-nearest neighbor algorithms for the classification process.The algorithm with the highest performance was selected for the epitope mapping procedure.Based on the obtained results,the random forest algorithm was the most accurate classifier with an accuracy of 0.934 followed by K-nearest neighbor,artificial neural network,and support vector machine respectively.Furthermore,the efficacies of predicted epitopes by the trained random forest algorithm were assessed through their antigenicity potential as well as affinity to human B cell receptor and MHC-I/II alleles using the VaxiJen score and molecular docking,respectively.It was also clear that the predicted epitopes especially the B-cell epitopes had high antigenicity potentials and good affinities to the protein targets.According to the results,the suggested method can be considered for developing specific epitope predictor software as well as an accelerator pipeline for designing serotype independent vaccine against the virus.
基金supported by The National Key Research and Development Program of China(2021YFB4001204)National Natural Science Foundation of China(22379143)。
文摘Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs.
文摘Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite has been synthesized through electrochemical method and characterized by UV-Visible spectroscopy, XRD, SEM and EDAX data. UV-Visible spectroscopy measurements reveal that the Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite has maximum absorption at 353.04 nm and this peak position reflects the band gap of particles and it is found to be 2.51 eV which was calculated using Tauc plot. X-Ray diffraction (XRD) reveals crystaline size to be 49.85 nm which was calculated using Williamson-Hall (W-H) plot method. Photocatalytic degradation of acetic acid, chloroacetic acid and trichloroacetic acid has been studied by volumetric method using NaOH solution. Photocatalytic degradation of chloroacetic acid and acetic acid follows first order kinetics. The photodegradation efficiency for Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite was found to be ≈97.8%. A Taft linear free energy relationship is noted for the catalysed reaction with ρ* = 0.233 and indicating electron withdrawing groups enhance the rate. An isokinetic relation is observed with β = 358 K indicating that enthalpy factor controls the reaction rate. The result of this paper suggests the possibility of degradation of organic compounds, industrial effluants and toxic organic compounds by photodegradation process by ecofriendly Al<sub>2</sub>S<sub>3</sub>/ MoS<sub>2</sub>. The antibacterial activity of Al<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> nanocomposite was investigated. These particles were shown to have an effective bactericide.
基金Supported by the Preresearch Project of the National Natural Science Foundation of China,No.ZRYY1906the Applied Basic Research Project of the Science and Technology Department of Sichuan Province,No.2021YJ0154+1 种基金the Talent Research Promotion Plan of Xinglin Scholars of Chengdu University of Traditional Chinese Medicine,No.QNXZ2019035the Chengdu University of Traditional Chinese Medicine‘Xinglin Scholars'subject talent research promotion Program(young scholars),No.QNXZ2019037.
文摘BACKGROUND Lingguizhugan(LGZG)decoction is a widely used classic Chinese medicine formula that was recently shown to improve high-fat diet(HFD)-induced insulin resistance(IR)in animal studies.AIM To assess the therapeutic effect of LGZG decoction on HFD-induced IR and explore the potential underlying mechanism.METHODS To establish an IR rat model,a 12-wk HFD was administered,followed by a 4-wk treatment with LGZG.The determination of IR status was achieved through the use of biochemical tests and oral glucose tolerance tests.Using a targeted metabolomics platform to analyze changes in serum metabolites,quantitative real-time PCR(qRT-PCR)was used to assess the gene expression of the ribosomal protein S6 kinase beta 1(S6K1).RESULTS In IR rats,LGZG decreased body weight and indices of hepatic steatosis.It effectively controlled blood glucose and food intake while protecting islet cells.Metabolite analysis revealed significant differences between the HFD and HFDLGZG groups.LGZG intervention reduced branched-chain amino acid levels.Levels of IR-related metabolites such as tryptophan,alanine,taurine,and asparagine decreased significantly.IR may be linked to amino acids due to the contemporaneous increase in S6K1 expression,as shown by qRT-PCR.CONCLUSIONS Our study strongly suggests that LGZG decoction reduces HFD-induced IR.LGZG may activate S6K1 via metabolic pathways.These findings lay the groundwork for the potential of LGZG as an IR treatment.
基金supported by the National Key Research&Development Program of China,Nos.2021YFC2501205(to YC),2022YFC24069004(to JL)the STI2030-Major Project,Nos.2021ZD0201101(to YC),2022ZD0211800(to YH)+2 种基金the National Natural Science Foundation of China(Major International Joint Research Project),No.82020108013(to YH)the Sino-German Center for Research Promotion,No.M-0759(to YH)a grant from Beijing Municipal Science&Technology Commission(Beijing Brain Initiative),No.Z201100005520018(to JL)。
文摘Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is known about the long-term stability of these biomarker proteins in plasma samples stored at-80°C.We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort.Plasma samples from 229 cognitively unimpaired individuals,encompassing healthy controls and those experiencing subjective cognitive decline,as well as 99 patients with cognitive impairment,comprising those with mild cognitive impairment and dementia,were acquired from the Sino Longitudinal Study on Cognitive Decline project.These samples were stored at-80°C for up to 6 years before being used in this study.Our results showed that plasma levels of Aβ42,Aβ40,neurofilament light chain,and glial fibrillary acidic protein were not significantly correlated with sample storage time.However,the level of total tau showed a negative correlation with sample storage time.Notably,in individuals without cognitive impairment,plasma levels of total protein and tau phosphorylated protein threonine 181(p-tau181)also showed a negative correlation with sample storage time.This was not observed in individuals with cognitive impairment.Consequently,we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time.Therefore,caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases,such as Alzheimer's disease.Furthermore,in cohort studies,it is important to consider the impact of storage time on the overall results.
基金supported by the Research Project of the Shanghai Health Commission,No.2020YJZX0111(to CZ)the National Natural Science Foundation of China,Nos.82021002(to CZ),82272039(to CZ),82171252(to FL)+1 种基金a grant from the National Health Commission of People’s Republic of China(PRC),No.Pro20211231084249000238(to JW)Medical Innovation Research Project of Shanghai Science and Technology Commission,No.21Y11903300(to JG).
文摘Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.
文摘The coronavirus disease 2019(COVID-19)mortality rate in 55 African countries is almost 4.5 times lower than in the coronavirus disease 2019(COVID-19)despite Africa having over 4.2 times more people.This mortality paradox is also evident when comparing Nigeria,a heavily populated,poorly vaccinated and weakly mandated country to Israel,a small,highly vaccinated and strictly mandated country.Nigeria has almost 4 times lower COVID mortality than Israel.In this Field of Vision perspective,I explain how this paradox has evolved drawing upon my academic,clinical and social experience.Since April 2020,I’ve developed and been using the Egyptian immune-modulatory Kelleni’s protocol to manage COVID-19 patients including pediatric,geriatric,pregnant,immune-compromised and other individuals suffering from multiple comorbidities.It’s unfortunate that severe acute respiratory syndrome coronavirus 2 is still evolving accompanied by more deaths.However in Africa,we’ve been able to live without anxiety or mandates throughout the pandemic because we trust science and adopted early treatment using safe,and effective repurposed drugs that have saved the majority of COVID-19 patients.This article represents an African and Egyptian tale of honor.