期刊文献+
共找到70,105篇文章
< 1 2 250 >
每页显示 20 50 100
Melnikov向量和一般退化同宿分支
1
作者 周玉波 曾唯尧 《湖南师范大学自然科学学报》 CAS 1997年第2期9-15,共7页
利用指数型二分性理论和泛函分析方法,讨论了一般退化情形下的同宿分支理论,得到了一个一般的Melnikov型向量,且证明由此Melnikov向量的简单零点可推出横截同宿轨道的存在性.
关键词 melnikov向量 同宿分支 同宿轨道 微分系统
下载PDF
二阶Melnikov向量函数
2
作者 夏红强 《数学物理学报(A辑)》 CSCD 北大核心 1998年第4期389-393,共5页
在文中,作者定义了高阶Melnikov向量函数,并给出了一、二阶Melnikov向量函数的积分表达式;作为应用,利用一、二阶Melnikov向量函数给出了判别系统存在奇异轨道的判据。
关键词 奇异轨道 马氏向量函数 微分方程 二阶 系统
下载PDF
弱监督场景下的支持向量机算法综述 被引量:2
3
作者 丁世飞 孙玉婷 +3 位作者 梁志贞 郭丽丽 张健 徐晓 《计算机学报》 EI CAS CSCD 北大核心 2024年第5期987-1009,共23页
支持向量机(Support Vector Machine,SVM)是一种建立在结构风险最小化原则上的统计学习方法,以其在非线性、小样本以及高维问题中的独特优势被广泛应用于图像识别、故障诊断以及文本分类等领域.但SVM是一种监督学习算法,它旨在利用大量... 支持向量机(Support Vector Machine,SVM)是一种建立在结构风险最小化原则上的统计学习方法,以其在非线性、小样本以及高维问题中的独特优势被广泛应用于图像识别、故障诊断以及文本分类等领域.但SVM是一种监督学习算法,它旨在利用大量的、唯一且明确的真值标记样本来训练学习器,在不完全监督、不确切监督以及多义监督等弱监督场景下难以取得较好的效果.本文首先阐述了弱监督场景的概念和SVM的相关理论,然后从弱监督场景角度出发,系统地梳理了目前SVM算法的研究现状和发展,包括基于半监督学习、多示例学习以及多标记学习的方法;其中基于半监督学习的方法根据数据假设可细分为基于聚类假设和基于流形假设的方法,基于多标记学习的方法根据解决方案可细分为基于示例水平空间、基于包水平空间以及基于嵌入空间的方法,基于多标记学习的方法根据处理思路可细分为基于问题转换和基于算法自适应的方法;随后,本文总结了部分代表性算法在公开数据集上的实验结果;最后,探讨并展望了未来可能的研究方向. 展开更多
关键词 弱监督场景 支持向量 半监督学习 多示例学习 多标记学习
下载PDF
基于向量叉乘标签分配的遥感图像目标检测算法 被引量:1
4
作者 禹鑫燚 林密 +1 位作者 卢江平 欧林林 《高技术通讯》 CAS 北大核心 2024年第2期132-142,共11页
近年来遥感图像目标检测受到了广泛的关注,主流的遥感图像目标检测器通过预设锚框与真实框之间的交并比(IoU)进行正负样本的划分。为了解决基于IoU的标签分配方法在遥感图像小而密集目标中存在复检和漏检的问题,本文提出了一种基于向量... 近年来遥感图像目标检测受到了广泛的关注,主流的遥感图像目标检测器通过预设锚框与真实框之间的交并比(IoU)进行正负样本的划分。为了解决基于IoU的标签分配方法在遥感图像小而密集目标中存在复检和漏检的问题,本文提出了一种基于向量叉乘标签分配的遥感图像目标检测算法YOLOXR。首先,提出了一种标签粗分配策略,通过向量叉乘的方法判断特征图的像素点是否在旋转目标内或者目标中心点附近的旋转正方形框内,从而确定其是否为候选正样本。其次,为了降低边缘低质量候选正样本对标签分配的影响,提出了旋转中心度量方法,通过向量叉乘判断像素点距离中心点的远近程度进而赋予不同的权重。最后,基于最优传输的方法(sim OTA)选取真实框和样本点的最优匹配对,使得总体代价最小,进而为旋转目标分配合适的标签。此外,为了解决旋转IoU损失不可导以及Smooth L1损失难以权衡旋转框各个参数的问题,通过计算真实框和预测框二维高斯分布的Kullback-Leibler散度(KLD)来替代IoU。在公开的遥感图像目标检测数据DOTA、HRSC 2016和UCAS-AOD上的大量实验表明,所提方法优于目前绝大多数旋转目标检测算法。 展开更多
关键词 遥感图像 目标检测 标签分配 向量叉乘
下载PDF
基于支持向量机的蓄水工程土地利用分类与动态变化 被引量:1
5
作者 王军 柴志福 +3 位作者 马浩艳 赵志锰 邬佳宾 付卫平 《干旱区研究》 CSCD 北大核心 2024年第4期581-589,共9页
为进一步恢复和重建蓄水工程建成前后土地利用变化的历史过程,更好掌握和预报土地利用转移方向,本文利用支持向量机理论开展了土地利用类型解译的适应性研究,通过梳理土地利用动态变化,剖析了蓄水工程建成前后土地利用结构的自适应调节... 为进一步恢复和重建蓄水工程建成前后土地利用变化的历史过程,更好掌握和预报土地利用转移方向,本文利用支持向量机理论开展了土地利用类型解译的适应性研究,通过梳理土地利用动态变化,剖析了蓄水工程建成前后土地利用结构的自适应调节能力和演变方向。结果表明:(1)依靠自学习和自适应等优势能力,支持向量机解译土地利用分类的总体精度高达91.7%、Kappa系数为0.90;除耕地生产者精度相对较低外,水体、林地等其他土地类型具有较高的分类识别能力。(2)利用谷歌地球引擎(GEE)平台梳理土地利用类型演变过程发现,受“三北防护林”工程二阶段(2001—2020年)等项目实施影响,建设用地、林地面积出现较大增幅,其中,林地面积较2000年实施初期增加了近5倍。(3)工程建设运行后林地和建设用地近2/3面积保持了原貌,水体和未利用土地受水利和城建工程影响,原貌类型超过65%以上面积变成了其他类型;“三北防护林”工程加快了林地面积的增加和草地植被覆盖度的提高,低覆盖度草地转移到中、高覆盖度草地的面积净增幅达48.0%、50.2%。 展开更多
关键词 土地利用 支持向量 状态转移 蓄水工程
下载PDF
基于贝叶斯优化支持向量回归的流线型箱梁颤振气动外形优化方法 被引量:1
6
作者 封周权 邓佳逸 +1 位作者 华旭刚 陈政清 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期275-284,共10页
为解决风洞试验耗时费力和计算流体动力学(CFD)计算量大的问题,提出了一套新型流线型箱梁断面颤振性能气动外形优化方法.以风嘴参数为设计变量,利用CFD获取断面三分力系数,以准定常理论估算的颤振临界风速为优化目标.根据贝叶斯优化支... 为解决风洞试验耗时费力和计算流体动力学(CFD)计算量大的问题,提出了一套新型流线型箱梁断面颤振性能气动外形优化方法.以风嘴参数为设计变量,利用CFD获取断面三分力系数,以准定常理论估算的颤振临界风速为优化目标.根据贝叶斯优化支持向量回归构建代理模型,利用混合加点法更新模型,通过寻优算法确定最优断面.以虎门大桥为例,得到桥梁在可行域内颤振性能最佳的断面方案.结果表明,风嘴升高,颤振临界风速先增后减,相对高度为0.6时整体性能较优,相对高度为0.7时可获得最优断面.底板宽增加,颤振性能显著降低,下斜腹板倾角为14°~16°时颤振性能最优.断面优化后桥梁颤振临界风速相比原始断面提升约31%. 展开更多
关键词 流线型箱梁 气动优化 颤振性能 支持向量回归 贝叶斯优化 准定常理论
下载PDF
长向量处理器高效RNN推理方法 被引量:1
7
作者 苏华友 陈抗抗 杨乾明 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第1期121-130,共10页
模型深度的不断增加和处理序列长度的不一致对循环神经网络在不同处理器上的性能优化提出巨大挑战。针对自主研制的长向量处理器FT-M7032,实现了一个高效的循环神经网络加速引擎。该引擎采用行优先矩阵向量乘算法和数据感知的多核并行方... 模型深度的不断增加和处理序列长度的不一致对循环神经网络在不同处理器上的性能优化提出巨大挑战。针对自主研制的长向量处理器FT-M7032,实现了一个高效的循环神经网络加速引擎。该引擎采用行优先矩阵向量乘算法和数据感知的多核并行方式,提高矩阵向量乘的计算效率;采用两级内核融合优化方法降低临时数据传输的开销;采用手写汇编优化多种算子,进一步挖掘长向量处理器的性能潜力。实验表明,长向量处理器循环神经网络推理引擎可获得较高性能,相较于多核ARM CPU以及Intel Golden CPU,类循环神经网络模型长短记忆网络可获得最高62.68倍和3.12倍的性能加速。 展开更多
关键词 多核DSP 向量处理器 循环神经网络 并行优化
下载PDF
基于字词向量融合的民航智慧监管短文本分类 被引量:1
8
作者 王欣 干镞锐 +2 位作者 许雅玺 史珂 郑涛 《中国安全科学学报》 CAS CSCD 北大核心 2024年第2期37-44,共8页
为解决民航监管事项所产生的检查记录仅依靠人工进行分类分析导致效率低的问题,提出一种基于数据增强与字词向量融合的双通道特征提取的短文本分类模型,探讨民航监管事项的分类,包括与人、设备设施环境、制度程序和机构职责等相关问题... 为解决民航监管事项所产生的检查记录仅依靠人工进行分类分析导致效率低的问题,提出一种基于数据增强与字词向量融合的双通道特征提取的短文本分类模型,探讨民航监管事项的分类,包括与人、设备设施环境、制度程序和机构职责等相关问题。为解决类别不平衡问题,采用数据增强算法在原始文本上进行变换,生成新的样本,使各个类别的样本数量更加均衡。将字向量和词向量按字融合拼接,得到具有词特征信息的字向量。将字词融合的向量分别送入到文本卷积神经网络(TextCNN)和双向长短期记忆(BiLSTM)模型中进行不同维度的特征提取,从局部的角度和全局的角度分别提取特征,并在民航监管事项检查记录数据集上进行试验。结果表明:该模型准确率为0.9837,F 1值为0.9836。与一些字嵌入模型和词嵌入模型相对比,准确率提升0.4%。和一些常用的单通道模型相比,准确率提升3%,验证了双通道模型提取的特征具有全面性和有效性。 展开更多
关键词 字词向量融合 民航监管 短文本 文本卷积神经网络(TextCNN) 双向长短期记忆(BiLSTM)
下载PDF
面向类不均衡数据的多任务博弈概率分类向量机
9
作者 潘海洋 李丙新 +1 位作者 郑近德 童靳于 《机电工程》 CAS 北大核心 2024年第3期430-437,共8页
在工程实际中获取的故障样本往往会呈现不均衡特点,同时传统的分类模型也会存在局限性。针对这些问题,基于稀疏贝叶斯理论、模糊隶属度等理论,提出了一种多任务博弈概率分类向量机(MGPCVM)分类方法。首先,在MGPCVM的目标函数中,设计了... 在工程实际中获取的故障样本往往会呈现不均衡特点,同时传统的分类模型也会存在局限性。针对这些问题,基于稀疏贝叶斯理论、模糊隶属度等理论,提出了一种多任务博弈概率分类向量机(MGPCVM)分类方法。首先,在MGPCVM的目标函数中,设计了博弈因子,将不同类样本质心间的博弈信息赋予每个样本特定的样本质心敏感值,以解决传统分类器对不平衡数据集分类表现较差的问题;然后,在贝叶斯框架理论下,采用截断高斯先验分布的方法,使样本参数的正负与对应的标签信息相一致,且使样本质心敏感值产生了稀疏估计;最后,将MGPCVM方法应用于两种不同实验平台采集的滚动轴承实验数据处理,进行了故障诊断有效性验证。研究结果表明:在不同的不平衡比(IR)下,MGPCVM方法的准确率均保持在95%以上,相对于支持向量机(SVM)、概率分类向量机(PCVM)等方法提升了4%~8%;与典型向量式分类方法相比,MGPCVM方法可以在不平衡数据条件下表现出优越的分类性能,适用于实际工况中数据失衡的分类问题。 展开更多
关键词 滚动轴承 故障诊断 多任务博弈概率分类向量 支持向量 概率分类向量 不均衡比 故障分类模型
下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:4
10
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小二乘支持向量 软测量模型
下载PDF
基于特征信息熵与支持向量机的智能网联汽车CAN总线异常检测技术 被引量:2
11
作者 陈宁 《科学技术创新》 2024年第7期63-66,共4页
本文结合CNA报文的结构特点,探究了基于特征、信息熵的异常检测技术和基于支持向量机的异常检测技术。基于特征、信息熵的异常检测技术,将CAN ID作为特征,统计包含该特征的所有报文并计算信息熵。根据信息熵确立阈值标准,对比CAN总线报... 本文结合CNA报文的结构特点,探究了基于特征、信息熵的异常检测技术和基于支持向量机的异常检测技术。基于特征、信息熵的异常检测技术,将CAN ID作为特征,统计包含该特征的所有报文并计算信息熵。根据信息熵确立阈值标准,对比CAN总线报文的熵值是否在阈值范围内,从而检测是否存在异常。仿真结果表明,在报文数量较少的情况下,该技术的异常检测率可以达到100%。基于支持向量机的异常检测技术,将异常报文预处理后输入到支持向量机中训练,得到异常检测指标。利用该指标与CAN总线报文进行对比,从而检测是否存在异常。实验结果表明,该技术对多种CNA报文的异常检测率在90%以上。 展开更多
关键词 信息熵 支持向量 CAN总线 异常检测
下载PDF
基于词向量扩展的语义信息检索研究综述及应用展望 被引量:2
12
作者 杨曦宇 《林业科技情报》 2024年第1期212-215,共4页
运用词向量技术,对检索关键词进行语义相似度计算和查询扩展,得到查询扩展词集,实现更好的检索效果,提高数字学术文献信息检索的查准率和查全率,并提出基于词向量扩展的数字学术文献语义信息检索框架。
关键词 向量扩展 语义计算 信息检索 数字学术
下载PDF
基于多层全连接神经网络的6C地震波极化向量识别研究
13
作者 廖成旺 庞聪 +1 位作者 江勇 吴涛 《大地测量与地球动力学》 CSCD 北大核心 2024年第4期331-335,435,共6页
利用机器学习原理,提出一种基于多层全连接(multi-layer fully connected, MFC)神经网络的六分量(six-component, 6C)地震波极化向量识别方法。首先利用6C地震波各波型极化向量数学模型和一系列仿真参数得到5种波型和噪声波型各5 000个... 利用机器学习原理,提出一种基于多层全连接(multi-layer fully connected, MFC)神经网络的六分量(six-component, 6C)地震波极化向量识别方法。首先利用6C地震波各波型极化向量数学模型和一系列仿真参数得到5种波型和噪声波型各5 000个极化向量数据集,然后随机选取其中5 000个作为测试集,其余划分为训练集,进行MFC神经网络与支持向量机(support vector machine, SVM)的综合辨识性能对比实验。结果表明,MFC神经网络模型识别5种极化向量类型(SH波和Love波视为一类)和6种极化向量类型的效果均显著优于SVM模型,平均识别率分别达到99.786%和87.940%。 展开更多
关键词 极化向量识别 六分量地震波 多层全连接神经网络 支持向量
下载PDF
基于向量式有限元的网壳结构地震易损性分析 被引量:1
14
作者 曲激婷 宋嘉诚 霍林生 《世界地震工程》 北大核心 2024年第1期96-106,共11页
为解决网壳结构地震易损性研究中,增量动力分析(incremental dynamic analysis,IDA)所面临的结构非线性分析耗时长且求解困难的问题,提出了一种基于向量式有限元的IDA方法。首先,以一个Kiewitt-8型单层球面网壳为例,验证了向量式有限元... 为解决网壳结构地震易损性研究中,增量动力分析(incremental dynamic analysis,IDA)所面临的结构非线性分析耗时长且求解困难的问题,提出了一种基于向量式有限元的IDA方法。首先,以一个Kiewitt-8型单层球面网壳为例,验证了向量式有限元方法求解结构地震响应的准确性,其次选取12个不同参数的Kiewitt-8型单层球面网壳为研究对象,并考虑材料不确定性进行IDA分析,以地震峰值加速度与结构最大节点位移比为参数,绘制了结构在地震作用下的IDA曲线和轻微破坏、严重破坏及倒塌这三种性态下的易损性曲线。结果表明:向量式有限元能高效且准确的求解网壳结构的地震响应,屋面质量和矢跨比的增加均会增加三种性态点的超越概率;对于本文的网壳结构算例,求解时间仅为传统有限元方法的1/15,误差在3%以内,屋面质量和矢跨比的改变导致地震危险性最大增加了75%。 展开更多
关键词 增量动力分析 单层球面网壳 向量式有限元法 非线性分析 地震易损性分析
下载PDF
基于支持向量机的农业中小企业供应链金融信用风险评价 被引量:1
15
作者 李昕 谢昊伦 《物流科技》 2024年第5期146-149,共4页
农业供应链金融的发展,有效缓解了中小企业融资难的问题,但如何有效评估其信用风险尤为重要。针对农业中小企业,构建了供应链金融信用风险评估指标体系,并运用支持向量机建立了风险评估模型。经过对41组农业中小企业的数据进行训练和检... 农业供应链金融的发展,有效缓解了中小企业融资难的问题,但如何有效评估其信用风险尤为重要。针对农业中小企业,构建了供应链金融信用风险评估指标体系,并运用支持向量机建立了风险评估模型。经过对41组农业中小企业的数据进行训练和检验,发现该模型可以更准确地评估农业中小企业的信用风险,从而帮助商业银行等金融机构采取更有效的应对措施。 展开更多
关键词 供应链金融 支持向量 信用风险
下载PDF
基于模糊偏好标签向量的推荐算法
16
作者 苏湛 杨昊川 艾均 《应用科学学报》 CAS CSCD 北大核心 2024年第3期525-539,共15页
传统的协同过滤算法存在因评分预测误差导致的准确性不足,以及需要缓存大量相似性结果导致的算法可扩展性受限等缺点。为此提出了一种基于物品标签向量下的用户模糊偏好相似性度量方法,该方法使用模糊逻辑度量了不同用户对不同物品内容... 传统的协同过滤算法存在因评分预测误差导致的准确性不足,以及需要缓存大量相似性结果导致的算法可扩展性受限等缺点。为此提出了一种基于物品标签向量下的用户模糊偏好相似性度量方法,该方法使用模糊逻辑度量了不同用户对不同物品内容标签喜欢、不喜欢的程度,将用户间的相似性表示为物品内容标签上的一个向量。随后依据该向量与预测目标物品内容标签之间的关系,设计了相应的相似性计算和评分预测公式。在两个常用数据集上的实验结果表明,相较于其他算法该文在体现评分预测准确性指标平均绝对误差上提升了12.38%;在体现偏好预测准确性的F1值上提升了7.85%;在体现排序准确性的半衰期效用指标上提升了17.47%。同时,该文提出的算法减少了各指标的最优预测时需要的邻居数,缩短了算法运行时间,有效提升了可扩展性。 展开更多
关键词 推荐系统 协同过滤 相似性 模糊逻辑 标签向量
下载PDF
基于支持向量机集成的船舶舱室温湿度预测
17
作者 刘丙杰 侯慕馨 冀海燕 《海军工程大学学报》 CAS 北大核心 2024年第3期21-25,32,共6页
针对船舶舱室温湿度保持困难、数据难以预测的问题,提出了基于克隆选择算法的支持向量机集成方法。首先,利用克隆选择算法优化个体支持向量机,根据个体预测误差进行自适应集成;然后,对舱室温湿度时间序列数据样本化,采用支持向量机集成... 针对船舶舱室温湿度保持困难、数据难以预测的问题,提出了基于克隆选择算法的支持向量机集成方法。首先,利用克隆选择算法优化个体支持向量机,根据个体预测误差进行自适应集成;然后,对舱室温湿度时间序列数据样本化,采用支持向量机集成进行训练、测试;最后通过统计测试结果以及与BP神经网络、单支持向量机、GM(2,1)模型的预测误差对比发现,支持向量机集成模型可有效预测空调故障条件下船舶舱室温湿度的变化规律,为装备的使用和维护提供技术支持。 展开更多
关键词 支持向量机集成 船舶舱室 温湿度预测
下载PDF
基于非欧几何权向量产生策略的分解多目标优化算法
18
作者 孙良旭 李林林 刘国莉 《计算机科学》 CSCD 北大核心 2024年第11期280-291,共12页
随着目标数量的增加,多目标优化问题(Multi Objective Problems,MOPs)的求解越来越困难。基于分解的多目标进化算法表现出更好的性能,但在求解具有复杂Pareto前沿的MOPs时,此类算法易出现种群多样性不足、算法性能下降等问题。为了解决... 随着目标数量的增加,多目标优化问题(Multi Objective Problems,MOPs)的求解越来越困难。基于分解的多目标进化算法表现出更好的性能,但在求解具有复杂Pareto前沿的MOPs时,此类算法易出现种群多样性不足、算法性能下降等问题。为了解决这些问题,提出了一种基于非欧几何权向量产生策略的分解多目标优化算法,通过在非欧几何空间中拟合非支配前沿并进行参数估计,再利用对非支配解目标变量的正态统计采样生成权向量,以此引导种群的进化方向并保持种群的多样性。同时在非欧几何空间中周期性重新确定子问题的邻域,提高分解算法协同进化的效率,进而提高算法的性能。基于MaF基准测试函数的实验结果表明,相比MOEA/D,NSGA-Ⅲ和AR-MOEA算法,所提算法在求解多目标和众目标优化问题方面具有明显的优势。 展开更多
关键词 分解 多目标 向量 非支配前沿 非欧几何
下载PDF
一类转置与自身的列向量组等价的特殊矩阵
19
作者 侯汝臣 李波 《大学数学》 2024年第5期48-50,共3页
先给出方阵的列向量组和行向量组的转置等价的充分必要条件.再对一类由初等矩阵诱导的列向量组和行向量组的转置等价的矩阵进行了研究,指出这一类特殊矩阵具有对称性和非平凡情况下的退化性.
关键词 对称矩阵 反对称矩阵 向量 向量 等价
下载PDF
基于支持向量机和证据理论的复杂系统可靠性分析方法
20
作者 曹亮 龚曙光 +1 位作者 陈国强 董丽君 《机械设计》 CSCD 北大核心 2024年第5期131-137,共7页
针对复杂系统中存在极限状态方程为隐式情况及参数为认知不确定性的问题,文中提出了一种基于支持向量机和证据理论的高效可靠性分析方法。首先,基于贝叶斯方法和最大熵原理将焦元上的基本概率分配平均分配到焦元中每一个元素以实现证据... 针对复杂系统中存在极限状态方程为隐式情况及参数为认知不确定性的问题,文中提出了一种基于支持向量机和证据理论的高效可靠性分析方法。首先,基于贝叶斯方法和最大熵原理将焦元上的基本概率分配平均分配到焦元中每一个元素以实现证据体精确化;其次,面对多学科系统中极限状态方程为隐式情况,采用支持向量机(SVM)进行显式化处理。在该方法中提出了SVM训练样本抽取策略,并对SVM通过引入马尔可夫蒙特卡洛模拟法(MCMC)进行改进,使其能适用于多学科系统的隐式极限状态方程小失效概率的求解;最后,通过算例分析,表明该方法的精度和计算效率具有较大优势,相比于MCS,该方法抽样2000个样本点精度相对误差仅为3.05%,为复杂系统的可靠性分析提供了一定的参考价值。 展开更多
关键词 支持向量 证据理论 马尔可夫蒙特卡洛模拟法 复杂系统
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部