As for several nuclear reactions, the electroweak interaction is simply explained by a law of conservation of particle number. We find that the positron and electron consist of the three fundamental particles, and , r...As for several nuclear reactions, the electroweak interaction is simply explained by a law of conservation of particle number. We find that the positron and electron consist of the three fundamental particles, and , respectively. Furthermore, the members of the second and third generations quark composites consist of the first generation quark and the neutrino of fundamental particles. The particle and its anti- particle pair(or neutrino and its antineutrino pair) have to be an energy quantum (or a photon). The minimum Higgs boson (called “God particle”) might be a neutral pion. The fundamental particles are simply up and down quark, neutrino, muon-neutrino, and those anti-particles.展开更多
文摘As for several nuclear reactions, the electroweak interaction is simply explained by a law of conservation of particle number. We find that the positron and electron consist of the three fundamental particles, and , respectively. Furthermore, the members of the second and third generations quark composites consist of the first generation quark and the neutrino of fundamental particles. The particle and its anti- particle pair(or neutrino and its antineutrino pair) have to be an energy quantum (or a photon). The minimum Higgs boson (called “God particle”) might be a neutral pion. The fundamental particles are simply up and down quark, neutrino, muon-neutrino, and those anti-particles.