期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Analysis on nonlinear wind-induced dynamic response of membrane roofs with aerodynamic effects
1
作者 李庆祥 孙炳楠 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第4期475-481,共7页
Based on the characteristics of membrane structures and the air influence factors,this paper presented a method to simulate the air aerodynamic force effects including the added air mass,the acoustic radiation damping... Based on the characteristics of membrane structures and the air influence factors,this paper presented a method to simulate the air aerodynamic force effects including the added air mass,the acoustic radiation damping and the pneumatic stiffness.The infinite air was modeled using the acoustic fluid element of commercial FE software and the finite element membrane roof models were coupled with fluid models.A comparison between the results obtained by FE computation and those obtained by the vibration experiment for a cable-membrane verified the validity of the method.Furthermore,applying the method to a flat membrane roof structure and using its wind tunnel test results,the analysis of nonlinear wind-induced dynamic responses for such geometrically nonlinear roofs,including the roof-air coupled model was performed.The result shows that the air has large influence on vibrating membrane roofs according to results of comparing the nodal time-history displacements,accelerations and stress of the two different cases.Meantime,numerical studies show that the method developed can successfully solve the nonlinear wind-induced dynamic response of the membrane roof with aerodynamic effects. 展开更多
关键词 membrane roofs finite element method acoustic fluid element aerodynamic effects nonlinear dynamic analysis
下载PDF
Safety Limits for Pre-Tension of Membrane Roofs on Closed Structure in Air Flow
2
作者 Weiju Song Heyuan Yang Heding Yu 《Applied Mathematics》 2024年第11期818-827,共10页
The stiffness required for the normal operation of membrane roof comes from the application of pre-tension. When the pre-tension is too small, it is easy to cause instability under the action of wind load, which leads... The stiffness required for the normal operation of membrane roof comes from the application of pre-tension. When the pre-tension is too small, it is easy to cause instability under the action of wind load, which leads to excessive deformation of the roof and local or overall damage. In order to ensure that the membrane roof is always in normal use state in the airflow field, this paper takes the membrane pretension as the control parameter to study the value of safety pretension of closed membrane roof. According to the theory of large deflection of membrane and Galerkin method, the nonlinear vibration differential equation of membrane roof under static wind is established, and the critical state of safe working of membrane roof is determined by judging the stability of the solution of the equation, and the expression of critical wind speed is obtained. By establishing the inequality relationship between local design wind speed and critical wind speed, the safety pretension limit of membrane roof under specific site can be obtained. The research shows that the safety pretension limits of closed membrane roofs are different in different areas under different design return periods. In addition, the value of safety pretension is related to the film geometry. 展开更多
关键词 membrane roof Pre-Tension Aerodynamic Stability Critical Wind Speed
下载PDF
Construction Technology of Roof Membrane for World Cup Main Stadium
3
作者 ZHANG Jian SHEN Jiayong LI Bai 《施工技术(中英文)》 CAS 2021年第24期50-56,共7页
Based on the installation of the roof membrane of Lusail Stadium which is the main stadium of Qatar World Cup in 2022, a series of key technical challenges in the design and construction of the roof PTFE membrane of l... Based on the installation of the roof membrane of Lusail Stadium which is the main stadium of Qatar World Cup in 2022, a series of key technical challenges in the design and construction of the roof PTFE membrane of large stadiums are studied. Based on the analysis of the roof cable net system, the study formulated the overall sequence of membrane installation, and defined the construction method of membrane lifting and unfolding. Focusing on membrane fixing techniques with the tension rings, compression rings, and horizontal cable nodes, it also optimized membrane connection methods with arch and horizontal cable, and provided waterproof construction methods. According to the findings, the construction of stadium roof membranes should follow a logical sequence. The membranes’ fixing, connection and waterproof construction will have an important impact on the final quality. 展开更多
关键词 roof membrane World Cup stadium roof cable net membrane construction Lusail stadium
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部