Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane fo...Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence.展开更多
A stable colloidal boehmite sol was made with the aluminium iso propoxide made in China and used to prepare the supported γ alumina membrane using sol gel method. The γ alumina thin layer was characterized by SE...A stable colloidal boehmite sol was made with the aluminium iso propoxide made in China and used to prepare the supported γ alumina membrane using sol gel method. The γ alumina thin layer was characterized by SEM, N 2 sorption method and permeation measurement. The γ alumina membrane was prepared with uniform surface, thickness of 3 μm and average diameter of about 5 nm. The permeabilities of the single gases of H 2, N 2, Ar and their separation factors were measured. The experimental data explained a behavior of Knudsen diffusion for the gas transport through the thin membrane.展开更多
The goal of this study was to develop and design a composite proton exchange membrane(PEM) and membrane electrode assembly(MEA) that are suitable for the PEM based water electrolysis system. In particular,it focus...The goal of this study was to develop and design a composite proton exchange membrane(PEM) and membrane electrode assembly(MEA) that are suitable for the PEM based water electrolysis system. In particular,it focuses on the development of sulphonated polyether ether ketone(SPEEK) based membranes and caesium salt of silico-tungstic acid(Cs Si WA) matrix compared with one of the transition metal oxides such as titanium dioxide(TiO2), silicon dioxide(SiO2) and zirconium dioxide(ZrO2). The resultant membranes have been characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, ion exchange capacity(IEC), water uptake and atomic force microscopy. Comparative studies on the performance of MEAs were also conducted utilizing impregnation-reduction and conventional brush coating methods. The PEM electrolysis performance of SPEEK-Cs Si WA-ZrO2 composite membrane was more superior than that of other membranes involved in this study. Electrochemical characterization shows that a maximum current density of 1.4 A/cm^2 was achieved at 60 °C, explained by an increased concentration of protonic sites available at the interface.展开更多
The key for dust control of coal mine is to clarify the dust concentration distribution and sedimentation in different areas. Both similarity experiment and numerical simulation method have certain restrictions and ar...The key for dust control of coal mine is to clarify the dust concentration distribution and sedimentation in different areas. Both similarity experiment and numerical simulation method have certain restrictions and are quite different from the actual situation on site. In order to study the dust sedimentation regularity of coal mine in large mining height, “filter membrane method” is adopted in this paper, i.e., to dry and weigh the filter membrane before and after sampling, collect the dust of respirable zone on mining face and calculate the dust concentration based on a main airway of 100 m. The result shows that: A large amount of dust will be produced during coal mining, wherein the maximum dust concentration from 6 m upstream to 100 m downstream of coal cutter is 121 mg/m3</sup>, while the minimum dust concentration is 61 mg/m3</sup>;The dust concentration in return airway is reduced with the distance increases, while the dust concentration at the entrance is 91 mg/m3</sup>;A large amount of dust may fall from roof during section advancing and improves the dust concentration of hydraulic support in walking area obviously;The dust granularity of mining face and return airway is 0 - 100 μm, but the amount of respirable dust is higher than 80%, the larger the dust particle size, the higher the dust concentration. Besides, dust in small particle size can be suspended in air flow for longer, but that in large particle size may subside under the action of gravity;To reduce dust exposure, the mining position shall be located in the windward direction of advancing or coal cutter. This research can provide guidance for taking dust prevention measures of working face in large mining height.展开更多
This article classifies the seawater desalination technology into four types of hot method, membrane method, electric field method and solvent method. Electric field method and solvent method still remain experimental...This article classifies the seawater desalination technology into four types of hot method, membrane method, electric field method and solvent method. Electric field method and solvent method still remain experimental stage, while hot method and membrane method have been realized in commercialization but are difficult to be promoted. The problem lies in high water-producing cost. It is difficult for membrane method seawater desalination technology to reduce the water-producing cost. The heat utilization efficiency is not high for the current hot method seawater desalination technology and there is large amount of heat lost with the emission of concentrated seawater. The new hot method seawater desalination technology and new solar-powered seawater desalination technology can divide the seawater into fresh water and solid salt without any emission of concentrated seawater so that the heat utilization efficiency can reach theoretical limit to multiply reduce the water-producing cost. They will become the mainstream technology for seawater desalination and can totally eliminate the global water crisis.展开更多
<b>Background:</b> Shallow wells and boreholes are vital sources of potable water in Hargeisa. This water can be polluted by runoff, in particular during the rainy season, causing outbreaks of waterborne i...<b>Background:</b> Shallow wells and boreholes are vital sources of potable water in Hargeisa. This water can be polluted by runoff, in particular during the rainy season, causing outbreaks of waterborne infections. <b>Objectives:</b> This research aimed at evaluating the microbial quality of shallow wells and boreholes water around Hargeisa, Somaliland. <b>Methods:</b> The total coliform and <i>Escherichia coli</i> count were done by using the membrane filtration method. Overall, 100 ml of each water sample was filtered via a 0.45 μm membrane filter, and then the filters were put on m-Endo agar plates that were incubated at 37°C for 24 to 48 hours. <b>Results:</b> The mean value of total coliform counts for the boreholes and shallow wells ranged from 1.288 × 10<sup>3</sup> to 8.8 × 10<sup>3</sup> CFU/100ml, while the mean value of total <i>E. coli</i> counts also ranged from 3.5 × 10<sup>2</sup> to 4.429 × 10<sup>3</sup> CFU/100ml. Results from this study have demonstrated that all water sources (Arabsiyo, Dararweyne, Darasalaam, Dabaraqas, and Jaleelo) don’t comply with the WHO guideline for drinking water. Results from the analysis of water samples of 28 wells demonstrated a significant correlation between total coliform and <i>E. coli</i> counts (P = 0.01). Therefore, this water is not fit for human consumption unless it is treated. <b>Conclusion:</b> This study has demonstrated that all results of both mean values of total coliform and <i>E. coli</i> counts from groundwater of selected shallow wells and boreholes were beyond WHO standards, so water from Arabsiyo, Jaleelo, Dabaraqas, Dararweyne, and Darasalaam requires treatment before human consumption.展开更多
A finite volume(FV)method for simulating 3D Fluid-Structure Interaction(FSI)is presented in this paper.The fluid flow is simulated using a parallel unstructured multigrid preconditioned implicit compressible solver,wh...A finite volume(FV)method for simulating 3D Fluid-Structure Interaction(FSI)is presented in this paper.The fluid flow is simulated using a parallel unstructured multigrid preconditioned implicit compressible solver,whist a 3D matrix-free implicit unstructured multigrid finite volume solver is employed for the structural dynamics.The two modules are then coupled using a so-called immersed membrane method(IMM).Large-Eddy Simulation(LES)is employed to predict turbulence.Results from several moving boundary and FSI problems are presented to validate proposed methods and demonstrate their efficiency。展开更多
Washing using ceramic micro-filtration membranes was studied in the preparation of nano-sized TiO2 and A1203 powder precursors obtained by wet chemical methods. The key parameters for the washing process, such as oper...Washing using ceramic micro-filtration membranes was studied in the preparation of nano-sized TiO2 and A1203 powder precursors obtained by wet chemical methods. The key parameters for the washing process, such as operation pressure, cross-flow velocity, and slurry concentration, were examined and optimized. The shape and size of particles influenced the structure of the filter cake, leading to different permeation flux for different systems. The results demonstrated that washing using ceramic membranes is superior to the traditional plate-and-frame filtration and could be considered an advanced technique for ultra-fine powder preparation by wet-chemical method.展开更多
The rigid-plastic assumption has greatly simplified the theoretical analysis of dynamic plastic response of structures.Within this framework,a common tool is the modal technique using approximate independent yield cri...The rigid-plastic assumption has greatly simplified the theoretical analysis of dynamic plastic response of structures.Within this framework,a common tool is the modal technique using approximate independent yield criteria,which leads to upper-and lower-bound solutions,but usually with poor accuracy.In this paper,by utilizing the membrane factor method(MFM),the large-deflection dynamic plastic response of square plates subjected to exponentially decaying pulse loading is analyzed by taking both the transient response phase and the exact yield criterion into account.Based on the combination of saturation analysis(SA)and MFM,the complete solutions and regressive formulae of saturated deflection and saturated impulse are obtained.As the dynamic behavior of plates under rectangular pulse loading serves as a benchmark of pulse-equivalent techniques,the large plastic deformation of square plates under short-duration rectangular pulse is also analyzed in detail.Moreover,by comparing the SA results of pulse-loaded square plates with different boundary conditions,it is found that the saturated deflection and saturated impulse of the fully clamped and simply supported square plates both increase linearly with the pulse amplitude,and the slopes are approximately the same,so the conversion between the SA quantities of plates with different boundary conditions can be easily achieved.展开更多
基金The project supported by a fund from the National Educational Committee.
文摘Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence.
文摘A stable colloidal boehmite sol was made with the aluminium iso propoxide made in China and used to prepare the supported γ alumina membrane using sol gel method. The γ alumina thin layer was characterized by SEM, N 2 sorption method and permeation measurement. The γ alumina membrane was prepared with uniform surface, thickness of 3 μm and average diameter of about 5 nm. The permeabilities of the single gases of H 2, N 2, Ar and their separation factors were measured. The experimental data explained a behavior of Knudsen diffusion for the gas transport through the thin membrane.
文摘The goal of this study was to develop and design a composite proton exchange membrane(PEM) and membrane electrode assembly(MEA) that are suitable for the PEM based water electrolysis system. In particular,it focuses on the development of sulphonated polyether ether ketone(SPEEK) based membranes and caesium salt of silico-tungstic acid(Cs Si WA) matrix compared with one of the transition metal oxides such as titanium dioxide(TiO2), silicon dioxide(SiO2) and zirconium dioxide(ZrO2). The resultant membranes have been characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, ion exchange capacity(IEC), water uptake and atomic force microscopy. Comparative studies on the performance of MEAs were also conducted utilizing impregnation-reduction and conventional brush coating methods. The PEM electrolysis performance of SPEEK-Cs Si WA-ZrO2 composite membrane was more superior than that of other membranes involved in this study. Electrochemical characterization shows that a maximum current density of 1.4 A/cm^2 was achieved at 60 °C, explained by an increased concentration of protonic sites available at the interface.
文摘The key for dust control of coal mine is to clarify the dust concentration distribution and sedimentation in different areas. Both similarity experiment and numerical simulation method have certain restrictions and are quite different from the actual situation on site. In order to study the dust sedimentation regularity of coal mine in large mining height, “filter membrane method” is adopted in this paper, i.e., to dry and weigh the filter membrane before and after sampling, collect the dust of respirable zone on mining face and calculate the dust concentration based on a main airway of 100 m. The result shows that: A large amount of dust will be produced during coal mining, wherein the maximum dust concentration from 6 m upstream to 100 m downstream of coal cutter is 121 mg/m3</sup>, while the minimum dust concentration is 61 mg/m3</sup>;The dust concentration in return airway is reduced with the distance increases, while the dust concentration at the entrance is 91 mg/m3</sup>;A large amount of dust may fall from roof during section advancing and improves the dust concentration of hydraulic support in walking area obviously;The dust granularity of mining face and return airway is 0 - 100 μm, but the amount of respirable dust is higher than 80%, the larger the dust particle size, the higher the dust concentration. Besides, dust in small particle size can be suspended in air flow for longer, but that in large particle size may subside under the action of gravity;To reduce dust exposure, the mining position shall be located in the windward direction of advancing or coal cutter. This research can provide guidance for taking dust prevention measures of working face in large mining height.
文摘This article classifies the seawater desalination technology into four types of hot method, membrane method, electric field method and solvent method. Electric field method and solvent method still remain experimental stage, while hot method and membrane method have been realized in commercialization but are difficult to be promoted. The problem lies in high water-producing cost. It is difficult for membrane method seawater desalination technology to reduce the water-producing cost. The heat utilization efficiency is not high for the current hot method seawater desalination technology and there is large amount of heat lost with the emission of concentrated seawater. The new hot method seawater desalination technology and new solar-powered seawater desalination technology can divide the seawater into fresh water and solid salt without any emission of concentrated seawater so that the heat utilization efficiency can reach theoretical limit to multiply reduce the water-producing cost. They will become the mainstream technology for seawater desalination and can totally eliminate the global water crisis.
文摘<b>Background:</b> Shallow wells and boreholes are vital sources of potable water in Hargeisa. This water can be polluted by runoff, in particular during the rainy season, causing outbreaks of waterborne infections. <b>Objectives:</b> This research aimed at evaluating the microbial quality of shallow wells and boreholes water around Hargeisa, Somaliland. <b>Methods:</b> The total coliform and <i>Escherichia coli</i> count were done by using the membrane filtration method. Overall, 100 ml of each water sample was filtered via a 0.45 μm membrane filter, and then the filters were put on m-Endo agar plates that were incubated at 37°C for 24 to 48 hours. <b>Results:</b> The mean value of total coliform counts for the boreholes and shallow wells ranged from 1.288 × 10<sup>3</sup> to 8.8 × 10<sup>3</sup> CFU/100ml, while the mean value of total <i>E. coli</i> counts also ranged from 3.5 × 10<sup>2</sup> to 4.429 × 10<sup>3</sup> CFU/100ml. Results from this study have demonstrated that all water sources (Arabsiyo, Dararweyne, Darasalaam, Dabaraqas, and Jaleelo) don’t comply with the WHO guideline for drinking water. Results from the analysis of water samples of 28 wells demonstrated a significant correlation between total coliform and <i>E. coli</i> counts (P = 0.01). Therefore, this water is not fit for human consumption unless it is treated. <b>Conclusion:</b> This study has demonstrated that all results of both mean values of total coliform and <i>E. coli</i> counts from groundwater of selected shallow wells and boreholes were beyond WHO standards, so water from Arabsiyo, Jaleelo, Dabaraqas, Dararweyne, and Darasalaam requires treatment before human consumption.
文摘A finite volume(FV)method for simulating 3D Fluid-Structure Interaction(FSI)is presented in this paper.The fluid flow is simulated using a parallel unstructured multigrid preconditioned implicit compressible solver,whist a 3D matrix-free implicit unstructured multigrid finite volume solver is employed for the structural dynamics.The two modules are then coupled using a so-called immersed membrane method(IMM).Large-Eddy Simulation(LES)is employed to predict turbulence.Results from several moving boundary and FSI problems are presented to validate proposed methods and demonstrate their efficiency。
基金financially supported by the Ministry of Science and Technology of China (Contract No. 2003CB615700)the Foundation of Science and Technology of the Educational Office of Anhui province, China (Contract No. 2005kj138)
文摘Washing using ceramic micro-filtration membranes was studied in the preparation of nano-sized TiO2 and A1203 powder precursors obtained by wet chemical methods. The key parameters for the washing process, such as operation pressure, cross-flow velocity, and slurry concentration, were examined and optimized. The shape and size of particles influenced the structure of the filter cake, leading to different permeation flux for different systems. The results demonstrated that washing using ceramic membranes is superior to the traditional plate-and-frame filtration and could be considered an advanced technique for ultra-fine powder preparation by wet-chemical method.
基金the support of the Wuhan University of Technology start-up fund for Distinguished Professors(No.471-40120163)the China Scholarship Council(CSC).
文摘The rigid-plastic assumption has greatly simplified the theoretical analysis of dynamic plastic response of structures.Within this framework,a common tool is the modal technique using approximate independent yield criteria,which leads to upper-and lower-bound solutions,but usually with poor accuracy.In this paper,by utilizing the membrane factor method(MFM),the large-deflection dynamic plastic response of square plates subjected to exponentially decaying pulse loading is analyzed by taking both the transient response phase and the exact yield criterion into account.Based on the combination of saturation analysis(SA)and MFM,the complete solutions and regressive formulae of saturated deflection and saturated impulse are obtained.As the dynamic behavior of plates under rectangular pulse loading serves as a benchmark of pulse-equivalent techniques,the large plastic deformation of square plates under short-duration rectangular pulse is also analyzed in detail.Moreover,by comparing the SA results of pulse-loaded square plates with different boundary conditions,it is found that the saturated deflection and saturated impulse of the fully clamped and simply supported square plates both increase linearly with the pulse amplitude,and the slopes are approximately the same,so the conversion between the SA quantities of plates with different boundary conditions can be easily achieved.