Hyperhomocysteinemia and oxidative stress may be strongly linked to hypertension, atherosclerosis and other cardiovascular diseases. The present study was performed to investigate possible relationships among plasma t...Hyperhomocysteinemia and oxidative stress may be strongly linked to hypertension, atherosclerosis and other cardiovascular diseases. The present study was performed to investigate possible relationships among plasma total homocysteine, plasma 8-iso-prostaglandin F2α (8-isoPG F2α: an index of oxidative stress), and membrane fluidity (a reciprocal value of membrane microviscosity) in hypertension. We measured the membrane fluidity of red blood cells (RBCs) in hypertensive and normotensive men using an electron spin resonance (ESR) and spin-labeling method. Membrane fluidity of RBCs was significantly decreased in hypertensive men compared with normotensive men. Plasma total homocysteine levels were significantly higher in hypertensive men than in normotensive men, and correlated with plasma 8-isoPG F2α. In contrast, plasma nitric oxide (NO)-metabolites (an index of endothelial function) were lower in hypertensive men than in normotensive men. The reduced membrane fluidity of RBCs was associated with increased total homocysteine and plasma 8-isoPG F2α levels and decreased plasma NO-metabolite levels. Multivariate regression analysis showed that, after adjusting for general risk factors, plasma total homocysteine and 8-isoPG F2α were significant determinants of membrane fluidity of RBCs, respectively. These results suggest that hyperhomocysteinemia and oxidative stress with endothelial dysfunction might have a close correlation with impaired rheologic behavior of RBCs and circulatory disorders in hypertensive men.展开更多
In situ regeneration is a promising strategy for constructing tissue engineering heart valves(TEHVs).Currently,the decellularized heart valve(DHV)is extensively employed as a TEHV scaffold.Nevertheless,DHV exhibits li...In situ regeneration is a promising strategy for constructing tissue engineering heart valves(TEHVs).Currently,the decellularized heart valve(DHV)is extensively employed as a TEHV scaffold.Nevertheless,DHV exhibits limited blood compatibility and notable difficulties in endothelialization,resulting in thrombosis and graft failure.The red blood cell membrane(RBCM)exhibits excellent biocompatibility and prolonged circulation stability and is extensively applied in the camouflage of nanoparticles for drug delivery;however,there is no report on its application for large-scale modification of decellularized extracellular matrix(ECM).For the first time,we utilized a layer-by-layer assembling strategy to immobilize RBCM on the surface of DHV and construct an innovative TEHV scaffold.Our findings demonstrated that the scaffold significantly improved the hemocompatibility of DHV by effectively preventing plasma protein adsorption,activated platelet adhesion,and erythrocyte aggregation,and induced macrophage polarization toward the M2 phenotype in vitro.Moreover,RBCM modification significantly enhanced the mechanical properties and enzymatic stability of DHV.The rat models of subcutaneous embedding and abdominal aorta implantation showed that the scaffold regulated the polarization of macrophages into the anti-inflammatory and pro-modeling M2 phenotype and promoted endothelialization and ECM remodeling in the early stage without thrombosis and calcification.The novel TEHV exhibits excellent performance and can overcome the limitations of commonly used clinical prostheses.展开更多
In this work, the previously developed coarse-grained (CG) particle models for biomembranes and red blood cells (RBCs) are reviewed, and the advantages of the CG particle methods over the continuum and atomistic s...In this work, the previously developed coarse-grained (CG) particle models for biomembranes and red blood cells (RBCs) are reviewed, and the advantages of the CG particle methods over the continuum and atomistic simulations for modeling biological phenomena are discussed. CG particle models can largely increase the length scale and time scale of atomistic simulations by eliminating the fast degrees of freedom while preserving the mesoscopic structures and properties of the simulated system. Moreover, CG particle models can be used to capture the microstructural alternations in diseased RBCs and simulate the topological changes of biomembranes and RBCs, which are the major challenges to the typical continuum representations of membranes and RBCs. The power and versatility of CG particle methods are demonstrated:through simulating the dynamical processes mvolving significant topological .changes e.g. lipid self-assembly vesicle fusion and membrane budding.展开更多
BACKGROUND: Ultraviolet blood irradiation and oxygenation (UBIO) has obtained better clinical effect in treating acute cerebral infarction, but the mechanism underlying this effect remains unclear. OBJECTIVE: To o...BACKGROUND: Ultraviolet blood irradiation and oxygenation (UBIO) has obtained better clinical effect in treating acute cerebral infarction, but the mechanism underlying this effect remains unclear. OBJECTIVE: To observe the effect of UBIO on the nerve function and activities of K^+-Na^+-ATPase and Ca2^+-Mg2^+-ATPase activities on the red blood cell (RBC) membrane of patients with acute cerebral infarction. DESIGN: A randomized and controlled study.SETTING: Department of Neurology, Xiangfan Central Hospital.PARTICIPANTS: From January 2000 to December 2001, excluding those above 70 years old, 58 cases of 700 patients with acute cerebral infarction admitted in the Department of Neurology, Xiangfan Central Hospital, were recruited and divided into two groups according to the random number table: UBIO treated group (n=28), including 17 males and 11 females, aged 40-68 years; and control group (n=30), including 20 males and 10 females, aged 44-69 years. All the patients agreed to participate in the therapeutic program and detected items. The general informations were comparable without obvious differences between the two groups (P 〉 0.05).METHODS: ① The patients in both groups received routine treatments, besides, those in the UBIO treated group were given UBIO treatment by using the XL-200 type therapeutic apparatus produced in Shijiazhuang, whose ultraviolet wave was set at 253.7 nm with the energy density of 0.568 J/m^2 per second, UBIO treatment started from the second day after admission, once every other day, with a single course consisting of 5-7 treatments. ② In the UBIO treated group, the venous blood was sampled before and after the first, third and the completion of the treatment course respectively, the venous blood was taken at each corresponding time point in the control group. After centrifugation of the blood at 10 000 rounds per minute, the RBC membrane was separated and then the activities of K^+-Na^+-ATPase and Ca2^+-Mg2^+-ATPase were detected by means of phosphorus determination.③ The nerve function was scored before and after treatment in both groups with European stroke scale, which included 13 items, the total score was 0-100 points, the higher the score, the better the nerve function. MAIN OUTCOME MEASURES :①Score of European stroke scale before and after treatment in both groups.② Comparison of the activities of K^+-Na^+-ATPase and Ca2^+-Mg2^+-ATPase on RBC membrane between the two groups before treatment and after the first, third and the completion of the treatment. RESULTS: All the 58 patients with cerebral infarction were involved in the analysis of results.① The score of European stroke scale had no obvious difference between the two groups [(49.31±11.48), (50.58±12.63), P 〉 0.05], and it was obviously higher in the UBIO treated group than in the control group after treatment [84.66±13.75), (77.05±11.17), P 〈 0.05].②The activity of K^+-Na^+-ATPase on RBC membrane in the UBIO treated group was significantly increased after the first and third treatment as compared with before treatment [(31.56±19.25), (27.64±15.83), (17.67±13.83), P 〈 0.01], it was still higher after the completion of the treatment than before treatment without obvious difference [(20.86±14.53), P 〉 0.05]. After the first and third treatment, it was obviously higher in the UBIO treated group than in the control group [19.31±11.88), (17.44±10.42), P 〈 0.01]. ③ In the UBIO treated group, Ca2^+-Mg2^+-ATPase activity on RBC membrane significantly increased after the first treatment and remained higher than the pre-treatment level throughout the treatment [(27.49±14.72), (17.41±4.82), P 〈 0.01]. The activity of Ca2^+-Mg2^+-ATPase on RBC membrane was markedly higher in the UBIO treated group than in the control group after after the first, third and the completion of treatment respectively [(24.83±12.88), (17.70±5.69); (28.08±13.44), (16.32±5.29); (17.42±6.04), P〈 0.05-0.01]. CONCLUSION: The effect of UBIO treatment against acute cerebral infarction may be mediated by the increased K^+-Na^+ ATPase and Ca2^+-Mg2^+-ATPase activities on RBC membrane, which enhances the RBC transformation ability so as to lower RBC aggregation and correct high blood viscosity.展开更多
Human red blood cells (RBCs) are responsible to transport oxygen and carbon dioxide for human bodies. The physiological functions of RBCs are greatly influenced by their mechanical properties. When RBC is infected by ...Human red blood cells (RBCs) are responsible to transport oxygen and carbon dioxide for human bodies. The physiological functions of RBCs are greatly influenced by their mechanical properties. When RBC is infected by Malaria parasite called Plasmodium falciparum, it shows progressive changes in mechanical properties and loses its deformability. The infected red blood cells (IRBCs) develop properties of cytoadherence (stickiness) and rosetting (the binding of non-infected RBCs to parasitized RBCs). In this paper to analyze the mechanical properties and deformability of the IRBC, we applied stress-stretch ratio relation of its biomembrane .To express this constitutive relation, we proposed a mathematical model (Neo-Hookean model) based on membrane theory. On this model, we present continuous stress-stretch ratio curves for the relation derived from the model for different intracellular developmental stages of the parasite, to determine the mechanical properties of IRBC. The analytical results obtained from the mathematical model are more closed with the experimental data [1] which demonstrates the validity of the model. By restricting our attention to spherically symmetric deformation in the final schizont stage of parasite development, the pressure-extension ratio relation curve also adapted from the proposed strain energy function. The change in osmotic pressure versus volumetric ratio has been also considered for IRBC before hemolysis.展开更多
FMS-like tyrosine kinase 3(FLT3)is a viable and important therapeutic target for acute myeloid leukemia(AML).FLT3 internal tandem duplication(FLT3-ITD)mutations have been identified in approximately 30%of AML patients...FMS-like tyrosine kinase 3(FLT3)is a viable and important therapeutic target for acute myeloid leukemia(AML).FLT3 internal tandem duplication(FLT3-ITD)mutations have been identified in approximately 30%of AML patients,and are associated with unfavorable prognosis,higher risk of relapse,drug resistance,and poor clinical outcome.Even FLT3 inhibitors have demonstrated promising efficacy,they cannot cure AML or even significantly extend the lives of patients with FLT3-ITD mutations.This is partly because of poor water solubility,insufficient membrane penetration and short half-life of small molecule inhibitors.Besides,the presence of enzymes like CYP3A4 in bone marrow accelerate the elimination and metabolism of FLT3 inhibitors,resulting in low plasma concentrations and side effects.Here we report the erythrocyte membrane-camouflaged FLT3 inhibitor nanoparticles to enhance FLT3-ITD AML treatment.Briefly,we physically coextruded red blood cell(RBC)membrane vesicles with nanoparticles derived from FLT3 inhibitor F30 to obtain F30@RBC-M,which exhibited comparable potent FLT3-ITD inhibitory effects compared to free F30 in vitro,while displaying a higher potent antitumor efficacy in xenograft models due to the prolonged circulation properties.Furthermore,administration of F30@RBC-M significantly extended the survival of mice in a transplanted mouse model than F30 free drug.These findings suggest that RBC membrane-coated nanoparticles derived from FLT3 inhibitors hold promise as a tool to enhance the therapeutic efficacy to treat FLT3-ITD AML.展开更多
Semiconducting conjugated polymer nanoparticles(SPNs)represent an emerging class of phototheranostic materi-als with great promise for cancer treatment.In this report,low-bandgap electron donoracceptor(DA)-conjugated ...Semiconducting conjugated polymer nanoparticles(SPNs)represent an emerging class of phototheranostic materi-als with great promise for cancer treatment.In this report,low-bandgap electron donoracceptor(DA)-conjugated SPNs with sur-face cloaked by red blood cell membrane(RBCM)are developed for highly e ective photoacoustic imaging and photothermal therapy.The resulting RBCM-coated SPN(SPN@RBCM)displays remarkable near-infrared light absorption and good photosta-bility,as well as high photothermal conver-sion e ciency for photoacoustic imaging and photothermal therapy.Particularly,due to the small size(<5 nm),SPN@RBCM has the advantages of deep tumor penetration and rapid clearance from the body with no appreciable toxicity.The RBCM endows the SPNs with prolonged systematic circulation time,less reticuloendothelial system uptake and reduced immune-recognition,hence improving tumor accumulation after intravenous injection,which provides strong photoacoustic signals and exerts excellent photothermal therapeutic e ects.Thus,this work provides a valuable paradigm for safe and highly e cient tumor pho-toacoustic imaging and photothermal therapy for further clinical translation.展开更多
Gal alpha(1, 3) Gal (gal epitope) is a carbohydrate epitope and synthesized in large amount by alpha(1, 3) galactosyltransferase [alpha(1, 3) GT] enzyme on the cells of lower mammalian animals such as pigs and mice. H...Gal alpha(1, 3) Gal (gal epitope) is a carbohydrate epitope and synthesized in large amount by alpha(1, 3) galactosyltransferase [alpha(1, 3) GT] enzyme on the cells of lower mammalian animals such as pigs and mice. Human has no gal epitope due to the inactivation of alpha(1, 3) GT gene but produces a large amount of antibodies (anti-Gal) which recognize Gal alpha(1, 3) Gal structures specifically. In this study, a replication-deficient recombinant adenoviral vector Ad5sGT containing pig alpha(1, 3) GT cDNA was constructed and characterized. Adenoviral vector-mediated transfer of pig alpha(1, 3) GT gene into human tumor cells such as malignant melanoma A375, stomach cancer SGC-7901, and lung cancer SPC-A-1 was reported for the first time. Results showed that Gal epitope did not increase the sensitivity of human tumor cells to human complement-mediated lysis, although human complement activation and the binding of human IgG and IgM natural antibodies to human tumor cells were enhanced significantly after Ad5sGT transduction. Appearance of gal epitope on the human tumor cells changed the expression of cell surface carbohydrates reacting with Ulex europaeus I (UEA I) lectins, Vicia villosa agglutinin (VVA), Arachis hypogaea agglutinin (PNA), and Glycine max agglutinin (SBA) to different degrees. In addition, no effect of gal epitope on the growth in vitro of human tumor cells was observed in MTT assay.展开更多
Objective: To explore the mechanism ofintegrated traditional Chinese and Westernmedicine (TCM--WM ) therapy on chronicaplastic anemia (CAA). Methods: The RBClife span of 30 normal human subjects and 30patients with CA...Objective: To explore the mechanism ofintegrated traditional Chinese and Westernmedicine (TCM--WM ) therapy on chronicaplastic anemia (CAA). Methods: The RBClife span of 30 normal human subjects and 30patients with CAA were measured by sir labelled technique before and after TCM--WMtherapy. The morphology and distribution ofRBC membrane protein granules were observed by freeze fracture etching and transmission electron microscope. Results: The halflife of erythrocytes (RBC TI/2)was shortenedin CAA cases and there was a significant difference compared to healthy control (P <0. 01). After therapy, the RBC life span prolonged and approached the normal level. Before treatment, there existed abnormal in morphology, decrease in amount and uneven indistribution of protein granules in protoplasmicface (PF) and extracellular face (EF) of RBCmembrane. After treatment, the protein granules of RBC membrane was improved and approached to control. Conclusions: The morphology, amount, quality and distribution ofRBC membrane protein granule were closelyrelated to its life span. The therapeutic effectof TCM--WM was better than that of WMalone and it had a function both in stabilizingmembrane protein and extending the RBC lifespan.展开更多
Litsea elliptica Blume leaves have been traditionally used as medicinal herbs because of its antimutagenicity,chemopreventative and insecticidal properties. In this study,the toxic effects of L. elliptica essential oi...Litsea elliptica Blume leaves have been traditionally used as medicinal herbs because of its antimutagenicity,chemopreventative and insecticidal properties. In this study,the toxic effects of L. elliptica essential oil against Sprague-Dawley rat’s red blood cells (RBCs) were evaluated. L. elliptica essential oil was given by oral gavage 5 times per week for 3 treated groups in the doses of 125,250,and 500 mg/(kg body weight),respectively,and the control group received distilled water. Full blood count,RBC osmotic fragility,RBC morphological changes,and RBC membrane lipid were analyzed 28 d after the treatment. Although L. elliptica essential oil administration had significantly different effects on hemoglobin (Hb),mean cell hemoglobin concentration (MCHC),mean cell volume (MCV),and mean cell hemoglobin (MCH) in the experimental groups as compared to the control group (P<0.05),the values were still within the normal range. L. elliptica induced morphological changes of RBC into the form of echinocyte. The percentage of echinocyte increased significantly among the treated groups in a dose-response manner (P<0.001). The concentrations of RBC membrane phospholipids and cholesterol of all treated groups were significantly lower than those of control group (P<0.001). However,the RBC membrane osmotic fragility and total proteins of RBC membrane findings did not differ significantly between control and treated groups (P>0.05). It is concluded that structural changes in the RBC membrane due to L. elliptica essential oil administration did not cause severe membrane damage.展开更多
The purpose of this study was to evaluate the ability of aqueous extract of Aloe barbadensis Miller (Aloe vera) on oxidative damage and Anion Exchanger 1 (AE1, also known as Band 3) expression in human erythrocytes ex...The purpose of this study was to evaluate the ability of aqueous extract of Aloe barbadensis Miller (Aloe vera) on oxidative damage and Anion Exchanger 1 (AE1, also known as Band 3) expression in human erythrocytes exposed to the water soluble free radical initiator 2.2’-azobis-2-amidinopropano dihydrochloride (AAPH). In addition, total phenolic compounds in the extracts were determined as catechin equivalent and the various antioxidant activities were compared to natural and synthetic standard antioxidants such as BHA and ascorbic acid. Since Aloe vera extract did not cause a consumption of the cytosolic antioxidant, glutathione (GSH) when it was direct incubated with GSH in basic aerated aqueous solution, this indicates that Aloe vera extract does not proceed auto oxidation at this experimental condition. Furthermore, Aloe vera extract prevent the consumption of GSH, in radical treated RBCs. It also inhibit consumption of GSH when it was direct incubated with AAPH. Aloe vera gel extract inhibits the generation of diphenyl-2-picrylhy-drazyl (DPPH) and the scavenging activity was increased in a dose dependent manner. Aloe vera extract was shown the similar reducing power than standards BHT and ascorbic acid. Biochemical analysis by SDS-PAGE and western blotting showed that AAPH-induced oxidative stress increased the susceptibility of AE1 to proteolytic degradation. Of note, our data evidenced that Aloe vera treatment was able to partially restore the normal RBC membrane protein profiles in a dose-dependent manner. These results clearly demonstrate the antioxidative activity of Aloe vera gel extract that might be ascribed to a synergistic action of the bioactive compounds contained therein.展开更多
文摘Hyperhomocysteinemia and oxidative stress may be strongly linked to hypertension, atherosclerosis and other cardiovascular diseases. The present study was performed to investigate possible relationships among plasma total homocysteine, plasma 8-iso-prostaglandin F2α (8-isoPG F2α: an index of oxidative stress), and membrane fluidity (a reciprocal value of membrane microviscosity) in hypertension. We measured the membrane fluidity of red blood cells (RBCs) in hypertensive and normotensive men using an electron spin resonance (ESR) and spin-labeling method. Membrane fluidity of RBCs was significantly decreased in hypertensive men compared with normotensive men. Plasma total homocysteine levels were significantly higher in hypertensive men than in normotensive men, and correlated with plasma 8-isoPG F2α. In contrast, plasma nitric oxide (NO)-metabolites (an index of endothelial function) were lower in hypertensive men than in normotensive men. The reduced membrane fluidity of RBCs was associated with increased total homocysteine and plasma 8-isoPG F2α levels and decreased plasma NO-metabolite levels. Multivariate regression analysis showed that, after adjusting for general risk factors, plasma total homocysteine and 8-isoPG F2α were significant determinants of membrane fluidity of RBCs, respectively. These results suggest that hyperhomocysteinemia and oxidative stress with endothelial dysfunction might have a close correlation with impaired rheologic behavior of RBCs and circulatory disorders in hypertensive men.
基金supported by the National Key Research and Development Program of China(2021YFA1101900 and 2023YFB3810100)the National Natural Science Foundation of China(82270381 and 81930052)the Major Science and Technology Special Plan Project of Yunnan Province(202302AA310045).
文摘In situ regeneration is a promising strategy for constructing tissue engineering heart valves(TEHVs).Currently,the decellularized heart valve(DHV)is extensively employed as a TEHV scaffold.Nevertheless,DHV exhibits limited blood compatibility and notable difficulties in endothelialization,resulting in thrombosis and graft failure.The red blood cell membrane(RBCM)exhibits excellent biocompatibility and prolonged circulation stability and is extensively applied in the camouflage of nanoparticles for drug delivery;however,there is no report on its application for large-scale modification of decellularized extracellular matrix(ECM).For the first time,we utilized a layer-by-layer assembling strategy to immobilize RBCM on the surface of DHV and construct an innovative TEHV scaffold.Our findings demonstrated that the scaffold significantly improved the hemocompatibility of DHV by effectively preventing plasma protein adsorption,activated platelet adhesion,and erythrocyte aggregation,and induced macrophage polarization toward the M2 phenotype in vitro.Moreover,RBCM modification significantly enhanced the mechanical properties and enzymatic stability of DHV.The rat models of subcutaneous embedding and abdominal aorta implantation showed that the scaffold regulated the polarization of macrophages into the anti-inflammatory and pro-modeling M2 phenotype and promoted endothelialization and ECM remodeling in the early stage without thrombosis and calcification.The novel TEHV exhibits excellent performance and can overcome the limitations of commonly used clinical prostheses.
基金Project supported by the National Institutes of Health of U.S.A.(No.U01HL114476)the National Science Foundation of U.S.A.(Nos.CMMI-1235025 and PHY-1205910)
文摘In this work, the previously developed coarse-grained (CG) particle models for biomembranes and red blood cells (RBCs) are reviewed, and the advantages of the CG particle methods over the continuum and atomistic simulations for modeling biological phenomena are discussed. CG particle models can largely increase the length scale and time scale of atomistic simulations by eliminating the fast degrees of freedom while preserving the mesoscopic structures and properties of the simulated system. Moreover, CG particle models can be used to capture the microstructural alternations in diseased RBCs and simulate the topological changes of biomembranes and RBCs, which are the major challenges to the typical continuum representations of membranes and RBCs. The power and versatility of CG particle methods are demonstrated:through simulating the dynamical processes mvolving significant topological .changes e.g. lipid self-assembly vesicle fusion and membrane budding.
文摘BACKGROUND: Ultraviolet blood irradiation and oxygenation (UBIO) has obtained better clinical effect in treating acute cerebral infarction, but the mechanism underlying this effect remains unclear. OBJECTIVE: To observe the effect of UBIO on the nerve function and activities of K^+-Na^+-ATPase and Ca2^+-Mg2^+-ATPase activities on the red blood cell (RBC) membrane of patients with acute cerebral infarction. DESIGN: A randomized and controlled study.SETTING: Department of Neurology, Xiangfan Central Hospital.PARTICIPANTS: From January 2000 to December 2001, excluding those above 70 years old, 58 cases of 700 patients with acute cerebral infarction admitted in the Department of Neurology, Xiangfan Central Hospital, were recruited and divided into two groups according to the random number table: UBIO treated group (n=28), including 17 males and 11 females, aged 40-68 years; and control group (n=30), including 20 males and 10 females, aged 44-69 years. All the patients agreed to participate in the therapeutic program and detected items. The general informations were comparable without obvious differences between the two groups (P 〉 0.05).METHODS: ① The patients in both groups received routine treatments, besides, those in the UBIO treated group were given UBIO treatment by using the XL-200 type therapeutic apparatus produced in Shijiazhuang, whose ultraviolet wave was set at 253.7 nm with the energy density of 0.568 J/m^2 per second, UBIO treatment started from the second day after admission, once every other day, with a single course consisting of 5-7 treatments. ② In the UBIO treated group, the venous blood was sampled before and after the first, third and the completion of the treatment course respectively, the venous blood was taken at each corresponding time point in the control group. After centrifugation of the blood at 10 000 rounds per minute, the RBC membrane was separated and then the activities of K^+-Na^+-ATPase and Ca2^+-Mg2^+-ATPase were detected by means of phosphorus determination.③ The nerve function was scored before and after treatment in both groups with European stroke scale, which included 13 items, the total score was 0-100 points, the higher the score, the better the nerve function. MAIN OUTCOME MEASURES :①Score of European stroke scale before and after treatment in both groups.② Comparison of the activities of K^+-Na^+-ATPase and Ca2^+-Mg2^+-ATPase on RBC membrane between the two groups before treatment and after the first, third and the completion of the treatment. RESULTS: All the 58 patients with cerebral infarction were involved in the analysis of results.① The score of European stroke scale had no obvious difference between the two groups [(49.31±11.48), (50.58±12.63), P 〉 0.05], and it was obviously higher in the UBIO treated group than in the control group after treatment [84.66±13.75), (77.05±11.17), P 〈 0.05].②The activity of K^+-Na^+-ATPase on RBC membrane in the UBIO treated group was significantly increased after the first and third treatment as compared with before treatment [(31.56±19.25), (27.64±15.83), (17.67±13.83), P 〈 0.01], it was still higher after the completion of the treatment than before treatment without obvious difference [(20.86±14.53), P 〉 0.05]. After the first and third treatment, it was obviously higher in the UBIO treated group than in the control group [19.31±11.88), (17.44±10.42), P 〈 0.01]. ③ In the UBIO treated group, Ca2^+-Mg2^+-ATPase activity on RBC membrane significantly increased after the first treatment and remained higher than the pre-treatment level throughout the treatment [(27.49±14.72), (17.41±4.82), P 〈 0.01]. The activity of Ca2^+-Mg2^+-ATPase on RBC membrane was markedly higher in the UBIO treated group than in the control group after after the first, third and the completion of treatment respectively [(24.83±12.88), (17.70±5.69); (28.08±13.44), (16.32±5.29); (17.42±6.04), P〈 0.05-0.01]. CONCLUSION: The effect of UBIO treatment against acute cerebral infarction may be mediated by the increased K^+-Na^+ ATPase and Ca2^+-Mg2^+-ATPase activities on RBC membrane, which enhances the RBC transformation ability so as to lower RBC aggregation and correct high blood viscosity.
文摘Human red blood cells (RBCs) are responsible to transport oxygen and carbon dioxide for human bodies. The physiological functions of RBCs are greatly influenced by their mechanical properties. When RBC is infected by Malaria parasite called Plasmodium falciparum, it shows progressive changes in mechanical properties and loses its deformability. The infected red blood cells (IRBCs) develop properties of cytoadherence (stickiness) and rosetting (the binding of non-infected RBCs to parasitized RBCs). In this paper to analyze the mechanical properties and deformability of the IRBC, we applied stress-stretch ratio relation of its biomembrane .To express this constitutive relation, we proposed a mathematical model (Neo-Hookean model) based on membrane theory. On this model, we present continuous stress-stretch ratio curves for the relation derived from the model for different intracellular developmental stages of the parasite, to determine the mechanical properties of IRBC. The analytical results obtained from the mathematical model are more closed with the experimental data [1] which demonstrates the validity of the model. By restricting our attention to spherically symmetric deformation in the final schizont stage of parasite development, the pressure-extension ratio relation curve also adapted from the proposed strain energy function. The change in osmotic pressure versus volumetric ratio has been also considered for IRBC before hemolysis.
基金supported by the National Natural Science Foundation of China(No.32222046,China)the Sichuan Science and Technology Program(Nos.2022NSFSC0823,2023NSFSC193,2022NSFSC0793,China)the 1·3·5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(No.ZYJC21022,China).
文摘FMS-like tyrosine kinase 3(FLT3)is a viable and important therapeutic target for acute myeloid leukemia(AML).FLT3 internal tandem duplication(FLT3-ITD)mutations have been identified in approximately 30%of AML patients,and are associated with unfavorable prognosis,higher risk of relapse,drug resistance,and poor clinical outcome.Even FLT3 inhibitors have demonstrated promising efficacy,they cannot cure AML or even significantly extend the lives of patients with FLT3-ITD mutations.This is partly because of poor water solubility,insufficient membrane penetration and short half-life of small molecule inhibitors.Besides,the presence of enzymes like CYP3A4 in bone marrow accelerate the elimination and metabolism of FLT3 inhibitors,resulting in low plasma concentrations and side effects.Here we report the erythrocyte membrane-camouflaged FLT3 inhibitor nanoparticles to enhance FLT3-ITD AML treatment.Briefly,we physically coextruded red blood cell(RBC)membrane vesicles with nanoparticles derived from FLT3 inhibitor F30 to obtain F30@RBC-M,which exhibited comparable potent FLT3-ITD inhibitory effects compared to free F30 in vitro,while displaying a higher potent antitumor efficacy in xenograft models due to the prolonged circulation properties.Furthermore,administration of F30@RBC-M significantly extended the survival of mice in a transplanted mouse model than F30 free drug.These findings suggest that RBC membrane-coated nanoparticles derived from FLT3 inhibitors hold promise as a tool to enhance the therapeutic efficacy to treat FLT3-ITD AML.
基金supported by the National Natural Science Foundation of China(Grant Nos.61727823,51873160)the joint research project of Health and Education Commission of Fujian Province(Grant No.2019-WJ-20).
文摘Semiconducting conjugated polymer nanoparticles(SPNs)represent an emerging class of phototheranostic materi-als with great promise for cancer treatment.In this report,low-bandgap electron donoracceptor(DA)-conjugated SPNs with sur-face cloaked by red blood cell membrane(RBCM)are developed for highly e ective photoacoustic imaging and photothermal therapy.The resulting RBCM-coated SPN(SPN@RBCM)displays remarkable near-infrared light absorption and good photosta-bility,as well as high photothermal conver-sion e ciency for photoacoustic imaging and photothermal therapy.Particularly,due to the small size(<5 nm),SPN@RBCM has the advantages of deep tumor penetration and rapid clearance from the body with no appreciable toxicity.The RBCM endows the SPNs with prolonged systematic circulation time,less reticuloendothelial system uptake and reduced immune-recognition,hence improving tumor accumulation after intravenous injection,which provides strong photoacoustic signals and exerts excellent photothermal therapeutic e ects.Thus,this work provides a valuable paradigm for safe and highly e cient tumor pho-toacoustic imaging and photothermal therapy for further clinical translation.
基金National..973" project, the Special Funds for Major State Bacsic Reseaxch of China (G1999053905) and NationalNatural Science Fou
文摘Gal alpha(1, 3) Gal (gal epitope) is a carbohydrate epitope and synthesized in large amount by alpha(1, 3) galactosyltransferase [alpha(1, 3) GT] enzyme on the cells of lower mammalian animals such as pigs and mice. Human has no gal epitope due to the inactivation of alpha(1, 3) GT gene but produces a large amount of antibodies (anti-Gal) which recognize Gal alpha(1, 3) Gal structures specifically. In this study, a replication-deficient recombinant adenoviral vector Ad5sGT containing pig alpha(1, 3) GT cDNA was constructed and characterized. Adenoviral vector-mediated transfer of pig alpha(1, 3) GT gene into human tumor cells such as malignant melanoma A375, stomach cancer SGC-7901, and lung cancer SPC-A-1 was reported for the first time. Results showed that Gal epitope did not increase the sensitivity of human tumor cells to human complement-mediated lysis, although human complement activation and the binding of human IgG and IgM natural antibodies to human tumor cells were enhanced significantly after Ad5sGT transduction. Appearance of gal epitope on the human tumor cells changed the expression of cell surface carbohydrates reacting with Ulex europaeus I (UEA I) lectins, Vicia villosa agglutinin (VVA), Arachis hypogaea agglutinin (PNA), and Glycine max agglutinin (SBA) to different degrees. In addition, no effect of gal epitope on the growth in vitro of human tumor cells was observed in MTT assay.
文摘Objective: To explore the mechanism ofintegrated traditional Chinese and Westernmedicine (TCM--WM ) therapy on chronicaplastic anemia (CAA). Methods: The RBClife span of 30 normal human subjects and 30patients with CAA were measured by sir labelled technique before and after TCM--WMtherapy. The morphology and distribution ofRBC membrane protein granules were observed by freeze fracture etching and transmission electron microscope. Results: The halflife of erythrocytes (RBC TI/2)was shortenedin CAA cases and there was a significant difference compared to healthy control (P <0. 01). After therapy, the RBC life span prolonged and approached the normal level. Before treatment, there existed abnormal in morphology, decrease in amount and uneven indistribution of protein granules in protoplasmicface (PF) and extracellular face (EF) of RBCmembrane. After treatment, the protein granules of RBC membrane was improved and approached to control. Conclusions: The morphology, amount, quality and distribution ofRBC membrane protein granule were closelyrelated to its life span. The therapeutic effectof TCM--WM was better than that of WMalone and it had a function both in stabilizingmembrane protein and extending the RBC lifespan.
基金Project (No. 02-01-02-SF0205) supported by the Ministry of Science, Technology and Innovation of Malaysia
文摘Litsea elliptica Blume leaves have been traditionally used as medicinal herbs because of its antimutagenicity,chemopreventative and insecticidal properties. In this study,the toxic effects of L. elliptica essential oil against Sprague-Dawley rat’s red blood cells (RBCs) were evaluated. L. elliptica essential oil was given by oral gavage 5 times per week for 3 treated groups in the doses of 125,250,and 500 mg/(kg body weight),respectively,and the control group received distilled water. Full blood count,RBC osmotic fragility,RBC morphological changes,and RBC membrane lipid were analyzed 28 d after the treatment. Although L. elliptica essential oil administration had significantly different effects on hemoglobin (Hb),mean cell hemoglobin concentration (MCHC),mean cell volume (MCV),and mean cell hemoglobin (MCH) in the experimental groups as compared to the control group (P<0.05),the values were still within the normal range. L. elliptica induced morphological changes of RBC into the form of echinocyte. The percentage of echinocyte increased significantly among the treated groups in a dose-response manner (P<0.001). The concentrations of RBC membrane phospholipids and cholesterol of all treated groups were significantly lower than those of control group (P<0.001). However,the RBC membrane osmotic fragility and total proteins of RBC membrane findings did not differ significantly between control and treated groups (P>0.05). It is concluded that structural changes in the RBC membrane due to L. elliptica essential oil administration did not cause severe membrane damage.
文摘The purpose of this study was to evaluate the ability of aqueous extract of Aloe barbadensis Miller (Aloe vera) on oxidative damage and Anion Exchanger 1 (AE1, also known as Band 3) expression in human erythrocytes exposed to the water soluble free radical initiator 2.2’-azobis-2-amidinopropano dihydrochloride (AAPH). In addition, total phenolic compounds in the extracts were determined as catechin equivalent and the various antioxidant activities were compared to natural and synthetic standard antioxidants such as BHA and ascorbic acid. Since Aloe vera extract did not cause a consumption of the cytosolic antioxidant, glutathione (GSH) when it was direct incubated with GSH in basic aerated aqueous solution, this indicates that Aloe vera extract does not proceed auto oxidation at this experimental condition. Furthermore, Aloe vera extract prevent the consumption of GSH, in radical treated RBCs. It also inhibit consumption of GSH when it was direct incubated with AAPH. Aloe vera gel extract inhibits the generation of diphenyl-2-picrylhy-drazyl (DPPH) and the scavenging activity was increased in a dose dependent manner. Aloe vera extract was shown the similar reducing power than standards BHT and ascorbic acid. Biochemical analysis by SDS-PAGE and western blotting showed that AAPH-induced oxidative stress increased the susceptibility of AE1 to proteolytic degradation. Of note, our data evidenced that Aloe vera treatment was able to partially restore the normal RBC membrane protein profiles in a dose-dependent manner. These results clearly demonstrate the antioxidative activity of Aloe vera gel extract that might be ascribed to a synergistic action of the bioactive compounds contained therein.