期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Regulation of adenosine triphosphate-sensitive potassium channels suppresses the toxic effects of amyloid-beta peptide(25-35)
1
作者 Min Kong Maowen Ba +3 位作者 Hui Liang Peng Shao Tianxia Yu Ying Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第1期56-63,共8页
In this study, we treated PC12 cells with 0-20 μM amyloid-β peptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloid-β peptide (25-35) decreased PC12 cell viability, but adenosine tr... In this study, we treated PC12 cells with 0-20 μM amyloid-β peptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloid-β peptide (25-35) decreased PC12 cell viability, but adenosine triphosphate-sensitive potassium channel activator diazoxide suppressed the decrease in PC12 cell viability induced by amyloid-β peptide (25-35). Diazoxide protected PC12 cells against amyloid-β peptide (25-35)-induced increases in mitochondrial membrane potential and intracellular reactive oxygen species levels. These protective effects were reversed by the selective mitochondrial adenosine triphosphate-sensitive potassium channel blocker 5-hydroxydecanoate. An inducible nitric oxide synthase inhibitor, Nw-nitro-L-arginine, also protected PC12 cells from amyloid-β peptide (25-35)-induced increases in both mitochondrial membrane potential and intracellular reactive oxygen species levels. However, the H202-degrading enzyme catalase could not reverse the amyloid-β peptide (25-35)-induced increase in intracellular reactive oxygen species. A 24-hour exposure to amyloid-13 peptide (25-35) did not result in apoptosis or necrosis, suggesting that the increases in both mitochondrial membrane potential and reactive oxygen species levels preceded cell death. The data suggest that amyloid-β peptide (25-35) cytotoxicity is associated with adenosine triphosphate-sensitive potassium channels and nitric oxide. Regulation of adenosine triphosphate-sensitive potassium channels suppresses PC12 cell cytotoxicity induced by amyloid-β peptide (25-35). 展开更多
关键词 neural regeneration neurodegenerative diseases amyloid-β peptide (25-35) PC12 cell adenosinetriphosphate-sensitive potassium channel inducible nitric oxide synthase mitochondrial membranepotential reactive oxygen species grant-supported paper photographs-containing paper NEUROREGENERATION
下载PDF
Proton transfer-mediated GPCR activation
2
作者 Xuejun C. Zhang Can Cao Ye Zhou Yan Zhao 《Protein & Cell》 SCIE CAS CSCD 2015年第1期12-17,共6页
G-protein coupled receptors (GPCRs) play essential roles in signal transduction from the environment into the cell. While many structural features have been elu- cidated in great detail, a common functional mechanis... G-protein coupled receptors (GPCRs) play essential roles in signal transduction from the environment into the cell. While many structural features have been elu- cidated in great detail, a common functional mechanism on how the ligand-binding signal is converted into a conformational change on the cytoplasmic face result- ing in subsequent activation of downstream effectors remain to be established. Based on available structural and functional data of the activation process in class-A GPCRs, we propose here that a change in protonation status, together with proton transfer via conserved structural elements located in the transmembrane region, are the key elements essential for signal trans- duction across the membrane. 展开更多
关键词 GPCR ACTIVATION PROTONATION membranepotential
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部