期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Intelligent Student Mental Health Assessment Model on Learning Management System
1
作者 Nasser Ali Aljarallah Ashit Kumar Dutta +1 位作者 Majed Alsanea Abdul Rahaman Wahab Sait 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1853-1868,共16页
A learning management system(LMS)is a software or web based application,commonly utilized for planning,designing,and assessing a particular learning procedure.Generally,the LMS offers a method of creating and deliveri... A learning management system(LMS)is a software or web based application,commonly utilized for planning,designing,and assessing a particular learning procedure.Generally,the LMS offers a method of creating and delivering content to the instructor,monitoring students’involvement,and validating their outcomes.Since mental health issues become common among studies in higher education globally,it is needed to properly determine it to improve mental stabi-lity.This article develops a new seven spot lady bird feature selection with opti-mal sparse autoencoder(SSLBFS-OSAE)model to assess students’mental health on LMS.The major aim of the SSLBFS-OSAE model is to determine the proper health status of the students with respect to depression,anxiety,and stress(DAS).The SSLBFS-OSAE model involves a new SSLBFS model to elect a useful set of features.In addition,OSAE model is applied for the classification of mental health conditions and the performance can be improved by the use of cuckoo search optimization(CSO)based parameter tuning process.The design of CSO algorithm for optimally tuning the SAE parameters results in enhanced classifica-tion outcomes.For examining the improved classifier results of the SSLBFS-OSAE model,a comprehensive results analysis is done and the obtained values highlighted the supremacy of the SSLBFS model over its recent methods interms of different measures. 展开更多
关键词 Learning management system mental health assessment intelligent models machine learning feature selection performance assessment
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部