In this paper, we propose a primal-dual interior point method for solving general constrained nonlinear programming problems. To avoid the situation that the algorithm we use may converge to a saddle point or a local ...In this paper, we propose a primal-dual interior point method for solving general constrained nonlinear programming problems. To avoid the situation that the algorithm we use may converge to a saddle point or a local maximum, we utilize a merit function to guide the iterates toward a local minimum. Especially, we add the parameter ε to the Newton system when calculating the decrease directions. The global convergence is achieved by the decrease of a merit function. Furthermore, the numerical results confirm that the algorithm can solve this kind of problems in an efficient way.展开更多
The tool point frequency response function(FRF) is commonly obtained by impacting test or semi-analytical techniques.Regardless of the approach,it is assumed that the workpiece system is rigid.The assumption is valid ...The tool point frequency response function(FRF) is commonly obtained by impacting test or semi-analytical techniques.Regardless of the approach,it is assumed that the workpiece system is rigid.The assumption is valid in common machining,but it doesn’t work well in the cutting processes of thin-wall products.In order to solve the problem,a multi-degree-of-freedom dynamic model is employed to obtain the relative dynamic stiffness between the cutting tool and the workpiece system.The relative direct and cross FRFs between the cutting tool and workpiece system are achieved by relative excitation experiment,and compared with the tool point FRFs at x and y axial direction.The comparison results indicate that the relative excitation method could be used to obtain the relative dynamic compliance of machine-tool-workpiece system more actually and precisely.Based on the more precise relative FRFs,four evaluation criterions of dynamic stiffness are proposed,and the variation trend curves of these criterions during the last six months are achieved and analyzed.The analysis results show that the lowest natural frequency,the maximum and the average dynamic compliances at x axial direction deteriorate more quickly than that at y axial direction.Therefore,the main cutting direction and the large-size direction of workpieces should be arranged at y axial direction to slow down the deterioration of the dynamic stiffness of machining centers.The compliance of workpiece system is considered,which can help master the deterioration rules of the dynamic stiffness of machining centers,and enhance the reliability of machine centers and the consistency of machining processes.展开更多
文摘In this paper, we propose a primal-dual interior point method for solving general constrained nonlinear programming problems. To avoid the situation that the algorithm we use may converge to a saddle point or a local maximum, we utilize a merit function to guide the iterates toward a local minimum. Especially, we add the parameter ε to the Newton system when calculating the decrease directions. The global convergence is achieved by the decrease of a merit function. Furthermore, the numerical results confirm that the algorithm can solve this kind of problems in an efficient way.
基金supported by National Natural Science Foundation of China(Grant No.51175208)National Key Basic Research Program of China(973 ProgramGrant No.2011CB706803)
文摘The tool point frequency response function(FRF) is commonly obtained by impacting test or semi-analytical techniques.Regardless of the approach,it is assumed that the workpiece system is rigid.The assumption is valid in common machining,but it doesn’t work well in the cutting processes of thin-wall products.In order to solve the problem,a multi-degree-of-freedom dynamic model is employed to obtain the relative dynamic stiffness between the cutting tool and the workpiece system.The relative direct and cross FRFs between the cutting tool and workpiece system are achieved by relative excitation experiment,and compared with the tool point FRFs at x and y axial direction.The comparison results indicate that the relative excitation method could be used to obtain the relative dynamic compliance of machine-tool-workpiece system more actually and precisely.Based on the more precise relative FRFs,four evaluation criterions of dynamic stiffness are proposed,and the variation trend curves of these criterions during the last six months are achieved and analyzed.The analysis results show that the lowest natural frequency,the maximum and the average dynamic compliances at x axial direction deteriorate more quickly than that at y axial direction.Therefore,the main cutting direction and the large-size direction of workpieces should be arranged at y axial direction to slow down the deterioration of the dynamic stiffness of machining centers.The compliance of workpiece system is considered,which can help master the deterioration rules of the dynamic stiffness of machining centers,and enhance the reliability of machine centers and the consistency of machining processes.