We have found through calculations that the differences between the closest supposed prime numbers other than 2 and 3 defined in the articles are: 2;4: and 6. For those whose difference is equal to 6, we showed their ...We have found through calculations that the differences between the closest supposed prime numbers other than 2 and 3 defined in the articles are: 2;4: and 6. For those whose difference is equal to 6, we showed their origin then we classified them into two categories according to their classes, we showed in which context two prime numbers which differ from 6 are called sexy and in what context they are said real sexy prime. For those whose difference is equal to 4, we showed their origin then we showed that two prime numbers which differ from 4, that is to say two cousin prime numbers, are successive. We made an observation on the supposed prime numbers then we established two pairs of equations from this observation and deduced the origin of the Mersenne number and that of the Fermat number.展开更多
Lucas和Lehmer给出了测定Mersenne数的经典方法[1].在Journal of Number Theory 110(2005)“An elliptic curve test for Mersenne primes”[2]一文中,Benedict又给出了一种对Mersenne数进行素性测的椭圆曲线测试,但并没有给出两种测试...Lucas和Lehmer给出了测定Mersenne数的经典方法[1].在Journal of Number Theory 110(2005)“An elliptic curve test for Mersenne primes”[2]一文中,Benedict又给出了一种对Mersenne数进行素性测的椭圆曲线测试,但并没有给出两种测试运算量的分析与比较.本文根据其原理进行了实现分析,并与经典的Lucas-Lehmer测试进行运算量的比较,结果显示椭圆曲线测试的运算量大于Lucas测试运算量的4倍.展开更多
文摘We have found through calculations that the differences between the closest supposed prime numbers other than 2 and 3 defined in the articles are: 2;4: and 6. For those whose difference is equal to 6, we showed their origin then we classified them into two categories according to their classes, we showed in which context two prime numbers which differ from 6 are called sexy and in what context they are said real sexy prime. For those whose difference is equal to 4, we showed their origin then we showed that two prime numbers which differ from 4, that is to say two cousin prime numbers, are successive. We made an observation on the supposed prime numbers then we established two pairs of equations from this observation and deduced the origin of the Mersenne number and that of the Fermat number.
文摘Lucas和Lehmer给出了测定Mersenne数的经典方法[1].在Journal of Number Theory 110(2005)“An elliptic curve test for Mersenne primes”[2]一文中,Benedict又给出了一种对Mersenne数进行素性测的椭圆曲线测试,但并没有给出两种测试运算量的分析与比较.本文根据其原理进行了实现分析,并与经典的Lucas-Lehmer测试进行运算量的比较,结果显示椭圆曲线测试的运算量大于Lucas测试运算量的4倍.