As a kind of weak-path dependent options, barrier options are an important kind of exotic options. Because the pricing formula for pricing barrier options with discrete observations cannot avoid computing a high dimen...As a kind of weak-path dependent options, barrier options are an important kind of exotic options. Because the pricing formula for pricing barrier options with discrete observations cannot avoid computing a high dimensional integral, numerical calculation is time-consuming. In the current studies, some scholars just obtained theoretical derivation, or gave some simulation calculations. Others impose underlying assets on some strong assumptions, for example, a lot of calculations are based on the Black-Scholes model. This thesis considers Merton jump diffusion model as the basic model to derive the pricing formula of discrete double barrier option;numerical calculation method is used to approximate the continuous convolution by calculating discrete convolution. Then we compare the results of theoretical calculation with simulation results by Monte Carlo method, to verify their efficiency and accuracy. By comparing the results of degeneration constant parameter model with the results of previous models we verified the calculation method is correct indirectly. Compared with the Monte Carlo simulation method, the numerical results are stable. Even if we assume the simulation results are accurate, the time consumed by the numerical method to achieve the same accuracy is much less than the Monte Carlo simulation method.展开更多
Default Probabilities quantitatively measures the credit risk that a borrower will be unable or unwilling to repay its debt. An accurate model to estimate, as a function of time, these default probabilities is of cruc...Default Probabilities quantitatively measures the credit risk that a borrower will be unable or unwilling to repay its debt. An accurate model to estimate, as a function of time, these default probabilities is of crucial importance in the credit derivatives market. In this work, we adapt Merton’s [1] original works on credit risk, consumption and portfolio rules to model an individual wealth scenario, and apply it to compute this individual default probabilities. Using our model, we also compute the time depending individual default intensities, recovery rates, hazard rate and risk premiums. Hence, as a straight-forward application, our model can be used as novel way to measure the credit risk of individuals.展开更多
We have shown that classic works of Modigliani and Miller, Black and Scholes, Merton, Black and Cox, and Leland making the foundation of the modern asset pricing theory, are wrong due to misinterpretation of no arbitr...We have shown that classic works of Modigliani and Miller, Black and Scholes, Merton, Black and Cox, and Leland making the foundation of the modern asset pricing theory, are wrong due to misinterpretation of no arbitrage as the martingale no-arbitrage principle. This error explains appearance of the geometric Brownian model (GBM) for description of the firm value and other long-term assets considering the firm and its assets as self-financing portfolios with symmetric return distributions. It contradicts the empirical observations that returns on firms, stocks, and bonds are skewed. On the other side, the settings of the asset valuation problems, taking into account the default line and business securing expenses, BSEs, generate skewed return distributions for the firm and its securities. The Extended Merton model (EMM), taking into account BSEs and the default line, shows that the no-arbitrage principle should be understood as the non-martingale no arbitrage, when for sufficiently long periods both the predictable part of returns and the mean of the stochastic part of returns occur negative, and the value of the return deficit depends on time and the states of the firm and market. The EMM findings explain the problems with the S&P 500 VIX, the strange behavior of variance and skewness of stock returns before and after the crisis of 1987, etc.展开更多
文摘As a kind of weak-path dependent options, barrier options are an important kind of exotic options. Because the pricing formula for pricing barrier options with discrete observations cannot avoid computing a high dimensional integral, numerical calculation is time-consuming. In the current studies, some scholars just obtained theoretical derivation, or gave some simulation calculations. Others impose underlying assets on some strong assumptions, for example, a lot of calculations are based on the Black-Scholes model. This thesis considers Merton jump diffusion model as the basic model to derive the pricing formula of discrete double barrier option;numerical calculation method is used to approximate the continuous convolution by calculating discrete convolution. Then we compare the results of theoretical calculation with simulation results by Monte Carlo method, to verify their efficiency and accuracy. By comparing the results of degeneration constant parameter model with the results of previous models we verified the calculation method is correct indirectly. Compared with the Monte Carlo simulation method, the numerical results are stable. Even if we assume the simulation results are accurate, the time consumed by the numerical method to achieve the same accuracy is much less than the Monte Carlo simulation method.
文摘Default Probabilities quantitatively measures the credit risk that a borrower will be unable or unwilling to repay its debt. An accurate model to estimate, as a function of time, these default probabilities is of crucial importance in the credit derivatives market. In this work, we adapt Merton’s [1] original works on credit risk, consumption and portfolio rules to model an individual wealth scenario, and apply it to compute this individual default probabilities. Using our model, we also compute the time depending individual default intensities, recovery rates, hazard rate and risk premiums. Hence, as a straight-forward application, our model can be used as novel way to measure the credit risk of individuals.
文摘We have shown that classic works of Modigliani and Miller, Black and Scholes, Merton, Black and Cox, and Leland making the foundation of the modern asset pricing theory, are wrong due to misinterpretation of no arbitrage as the martingale no-arbitrage principle. This error explains appearance of the geometric Brownian model (GBM) for description of the firm value and other long-term assets considering the firm and its assets as self-financing portfolios with symmetric return distributions. It contradicts the empirical observations that returns on firms, stocks, and bonds are skewed. On the other side, the settings of the asset valuation problems, taking into account the default line and business securing expenses, BSEs, generate skewed return distributions for the firm and its securities. The Extended Merton model (EMM), taking into account BSEs and the default line, shows that the no-arbitrage principle should be understood as the non-martingale no arbitrage, when for sufficiently long periods both the predictable part of returns and the mean of the stochastic part of returns occur negative, and the value of the return deficit depends on time and the states of the firm and market. The EMM findings explain the problems with the S&P 500 VIX, the strange behavior of variance and skewness of stock returns before and after the crisis of 1987, etc.