Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cel...Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cells(MSCs)are critical for BM/bone homeostasis,and failures in their functionality,transform the BM into a premetastatic niche(PMN).We previously found that BM-MSCs from advanced breast cancer patients(BCPs,infiltrative ductal carcinoma,stage III-B)have an abnormal profile.This work aims to study some of the metabolic and molecular mechanisms underlying MSCs shift from a normal to an abnormal profile in this group of patients.A comparative analysis was undertaken,which included self-renewal capacity,morphology,proliferation capacity,cell cycle,reactive oxygen species(ROS)levels,and senescence-associatedβ‑galactosidase(SA‑β‑gal)staining of BMderived MSCs isolated from 14 BCPs and 9 healthy volunteers(HVs).Additionally,the expression and activity of the telomerase subunit TERT,as well as telomere length,were measured.Expression levels of pluripotency,osteogenic,and osteoclastogenic genes(OCT-4,SOX-2,M-CAM,RUNX-2,BMP-2,CCL-2,M-CSF,and IL-6)were also determined.The results showed that MSCs from BCPs had reduced,self-renewal and proliferation capacity.These cells also exhibited inhibited cell cycle progression and phenotypic changes,such as an enlarged and flattened appearance.Additionally,there was an increase in ROS and senescence levels and a decrease in the functional capacity of TERT to preserve telomere length.We also found an increase in pro-inflammatory/pro-osteoclastogenic gene expression and a decrease in pluripotency gene expression.We conclude that these changes could be responsible for the abnormal functional profile that MSCs show in this group of patients.展开更多
Allogeneic hematopoietic stem cell transplantation is a deterministic curative procedure for various hematologic disorders and congenital immunodeficiency.Despite its increased use,the mortality rate for patients unde...Allogeneic hematopoietic stem cell transplantation is a deterministic curative procedure for various hematologic disorders and congenital immunodeficiency.Despite its increased use,the mortality rate for patients undergoing this procedure remains high,mainly due to the perceived risk of exacerbating graft-versushost disease(GVHD).However,even with immunosuppressive agents,some patients still develop GVHD.Advanced mesenchymal stem/stromal cell(MSC)strategies have been proposed to achieve better therapeutic outcomes,given their immunosuppressive potential.However,the efficacy and trial designs have varied among the studies,and some research findings appear contradictory due to the challenges in characterizing the in vivo effects of MSCs.This review aims to provide real insights into this clinical entity,emphasizing diagnostic,and therapeutic considerations and generating pathophysiology hypotheses to identify research avenues.The indications and timing for the clinical application of MSCs are still subject to debate.展开更多
Mesenchymal stromal/stem cells(MSCs)are currently applied in regenerative medicine and tissue engineering.Numerous clinical studies have indicated that MSCs from different tissue sources can provide therapeutic benefi...Mesenchymal stromal/stem cells(MSCs)are currently applied in regenerative medicine and tissue engineering.Numerous clinical studies have indicated that MSCs from different tissue sources can provide therapeutic benefits for patients.MSCs derived from either human adult or perinatal tissues have their own unique advantages in their medical practices.Usually,clinical studies are conducted by using of cultured MSCs after thawing or short-term cryopreserved-then-thawed MSCs prior to administration for the treatment of a wide range of diseases and medical disorders.Currently,cryogenically banking perinatal MSCs for potential personalized medicine for later use in lifetime has raised growing interest in China as well as in many other countries.Meanwhile,this has led to questions regarding the availability,stability,consistency,multipotency,and therapeutic efficiency of the potential perinatal MSC-derived therapeutic products after longterm cryostorage.This opinion review does not minimize any therapeutic benefit of perinatal MSCs in many diseases after short-term cryopreservation.This article mainly describes what is known about banking perinatal MSCs in China and,importantly,it is to recognize the limitation and uncertainty of the perinatal MSCs stored in cryobanks for stem cell medical treatments in whole life.This article also provides several recommendations for banking of perinatal MSCs for potentially future personalized medicine,albeit it is impossible to anticipate whether the donor will benefit from banked MSCs during her/his lifetime.展开更多
Osteoporosis is a systemic bone disease,which leads to decreased bone mass and an increased risk of fragility fractures.Currently,there are many anti-resorption drugs and osteosynthesis drugs,which are effective in th...Osteoporosis is a systemic bone disease,which leads to decreased bone mass and an increased risk of fragility fractures.Currently,there are many anti-resorption drugs and osteosynthesis drugs,which are effective in the treatment of osteoporosis,but their usage is limited due to their contraindications and side effects.In regenerative medicine,the unique repair ability of mesenchymal stem cells(MSCs)has been favored by researchers.The exosomes secreted by MSCs have signal transduction and molecular delivery mechanisms,which may have therapeutic effects.In this review,we describe the regulatory effects of MSCs-derived exosomes on osteoclasts,osteoblasts,and bone immunity.We aim to summarize the preclinical studies of exosome therapy in osteoporosis.Furth-ermore,we speculate that exosome therapy can be a future direction to improve bone health.展开更多
The ongoing outbreak of coronavirus disease 2019(COVID-19)caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens milli...The ongoing outbreak of coronavirus disease 2019(COVID-19)caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens millions of people’s life health.Two current studies have indicated a favorable role for mesenchymal stem/stromal cells(MSCs)in clinical remission of COVID-19 associated pulmonary diseases,yet the systematical elaboration of the therapeutics and underlying mechanism is far from satisfaction.In the present review,we summarize the therapeutic potential of MSCs in COVID-19 associated pulmonary diseases such as pneumonia induced acute lung injury,acute respiratory distress syndrome,and pulmonary fibrosis.Furthermore,we review the underlying mechanism of MSCs including direct-and trans-differentiation,autocrine and paracrine anti-inflammatory effects,homing,and neovascularization,as well as constitutive microenvironment.Finally,we discuss the prospects and supervision of MSC-based cytotherapy for COVID-19 management before large-scale application in clinical practice.Collectively,this review supplies overwhelming new references for understanding the landscapes of MSCs in the remission of COVID-19 associated pulmonary diseases.展开更多
Mesenchymal stem/stromal cells(MSCs)are extensively studied as cell-therapy agents for neurological diseases.Recent studies consider exosomes secreted by MSCs as important mediators for MSCs’neuroprotective functions...Mesenchymal stem/stromal cells(MSCs)are extensively studied as cell-therapy agents for neurological diseases.Recent studies consider exosomes secreted by MSCs as important mediators for MSCs’neuroprotective functions.Exosomes transfer functional molecules including proteins,lipids,metabolites,DNAs,and coding and non-coding RNAs from MSCs to their target cells.Emerging evidence shows that exosomal microRNAs(miRNAs)play a key role in the neuroprotective properties of these exosomes by targeting several genes and regulating various biological processes.Multiple exosomal miRNAs have been identified to have neuroprotective effects by promoting neurogenesis,neurite remodeling and survival,and neuroplasticity.Thus,exosomal miRNAs have significant therapeutic potential for neurological disorders such as stroke,traumatic brain injury,and neuroinflammatory or neurodegenerative diseases and disorders.This review discusses the neuroprotective effects of selected miRNAs(miR-21,miR-17-92,miR-133,miR-138,miR-124,miR-30,miR146a,and miR-29b)and explores their mechanisms of action and applications for the treatment of various neurological disease and disorders.It also provides an overview of state-of-the-art bioengineering approaches for isolating exosomes,optimizing their yield and manipulating the miRNA content of their cargo to improve their therapeutic potential.展开更多
Mesenchymal stem/stromal cells(MSCs)have various properties that make them promising candidates for stem cell-based therapies in clinical settings.These include self-renewal,multilineage differentiation,and immunoregu...Mesenchymal stem/stromal cells(MSCs)have various properties that make them promising candidates for stem cell-based therapies in clinical settings.These include self-renewal,multilineage differentiation,and immunoregulation.However,recent studies have confirmed that aging is a vital factor that limits their function and therapeutic properties as standardized clinical products.Understanding the features of senescence and exploration of cell rejuvenation methods are necessary to develop effective strategies that can overcome the shortage and instability of MSCs.This review will summarize the current knowledge on characteristics and functional changes of aged MSCs.Additionally,it will highlight cell rejuvenation strategies such as molecular regulation,noncoding RNA modifications,and microenvironment controls that may enhance the therapeutic potential of MSCs in clinical settings.展开更多
Theoretically, mesenchymal stem cells (MSCs) are very promising as adjuvanttherapy to alleviate coronavirus disease 2019 (COVID-19)-associated acute lunginjury and cytokine storm. Several published studies, which used...Theoretically, mesenchymal stem cells (MSCs) are very promising as adjuvanttherapy to alleviate coronavirus disease 2019 (COVID-19)-associated acute lunginjury and cytokine storm. Several published studies, which used MSCs toalleviate COVID-19-associated acute lung injury and cytokine storm, reportedpromising results. However, the evidence came from a case report, case series,and clinical trials with a limited number of participants. Therefore, more studiesare needed to get robust proof of MSC beneficial effects.展开更多
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the und...Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.展开更多
Non-alcoholic fatty liver disease(NAFLD)has emerged as a significant health challenge,characterized by its widespread prevalence,intricate natural progression and multifaceted pathogenesis.Although NAFLD initially pre...Non-alcoholic fatty liver disease(NAFLD)has emerged as a significant health challenge,characterized by its widespread prevalence,intricate natural progression and multifaceted pathogenesis.Although NAFLD initially presents as benign fat accumulation,it may progress to steatosis,non-alcoholic steatohepatitis,cirrhosis,and hepatocellular carcinoma.Mesenchymal stem cells(MSCs)are recognized for their intrinsic self-renewal,superior biocompatibility,and minimal immunogenicity,positioning them as a therapeutic innovation for liver diseases.Therefore,this review aims to elucidate the potential roles of MSCs in alleviating the progression of NAFLD by alteration of underlying molecular pathways,including glycolipid metabolism,inflammation,oxidative stress,endoplasmic reticulum stress,and fibrosis.The insights are expected to provide further understanding of the potential of MSCs in NAFLD therapeutics,and support the development of MSC-based therapy in the treatment of NAFLD.展开更多
BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the exist...BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the existence of several small compounds,Despite the objective of achieving full functional restoration by surgical intervention,the persistent challenge of inadequate functional recovery remains a significant concern in the context of peripheral nerve injuries.AIM To examine the impact of exosomes on the process of functional recovery following a complete radial nerve damage.METHODS A male individual,aged 24,who is right-hand dominant and an immigrant,arrived with an injury caused by a knife assault.The cut is located on the left arm,specifically below the elbow.The neurological examination and electrodiagnostic testing reveal evidence of left radial nerve damage.The sural autograft was utilized for repair,followed by the application of 1 mL of mesenchymal stem cell-derived exosome,comprising 5 billion microvesicles.This exosome was split into four equal volumes of 0.25 mL each and delivered microsurgically to both the proximal and distal stumps using the subepineural pathway.The patient was subjected to a period of 180 d during which they had neurological examination and electrodiagnostic testing.RESULTS The duration of the patient’s follow-up period was 180 d.An increasing Tinel’s sign and sensory-motor recovery were detected even at the 10th wk following nerve grafting.Upon the conclusion of the 6-mo post-treatment period,an evaluation was conducted to measure the extent of improvement in motor and sensory functions of the nerve.This assessment was based on the British Medical Research Council scale and the Mackinnon-Dellon scale.The results indicated that the level of improvement in motor function was classified as M5,denoting an excellent outcome.Additionally,the level of improvement in sensory function was classified as S3+,indicating a good outcome.It is noteworthy that these assessments were conducted in the absence of physical therapy.At the 10th wk post-injury,despite the persistence of substantial axonal damage,the nerve exhibited indications of nerve re-innervation as evidenced by control electromyography(EMG).In contrast to the preceding.EMG analysis revealed a significant electrophysiological enhancement in the EMG conducted at the 6th-mo follow-up,indicating ongoing regeneration.CONCLUSION Enhanced comprehension of the neurobiological ramifications associated with peripheral nerve damage,as well as the experimental and therapy approaches delineated in this investigation,holds the potential to catalyze future clinical progress.展开更多
Mesenchymal stem cells(MSCs)are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts,chondrocytes and adipocytes.The transformation of multipotent MSCs to adipocytes mainly involves two s...Mesenchymal stem cells(MSCs)are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts,chondrocytes and adipocytes.The transformation of multipotent MSCs to adipocytes mainly involves two subsequent steps from MSCs to preadipocytes and further preadipocytes into adipocytes,in which the process MSCs are precisely controlled to commit to the adipogenic lineage and then mature into adipocytes.Previous studies have shown that the master transcription factors C/enhancer-binding protein alpha and peroxisome proliferation activator receptor gamma play vital roles in adipogenesis.However,the mechanism underlying the adipogenic differentiation of MSCs is not fully understood.Here,the current knowledge of adipogenic differentiation in MSCs is reviewed,focusing on signaling pathways,noncoding RNAs and epigenetic effects on DNA methylation and acetylation during MSC differentiation.Finally,the relationship between maladipogenic differentiation and diseases is briefly discussed.We hope that this review can broaden and deepen our understanding of how MSCs turn into adipocytes.展开更多
Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving mul...Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving multifaceted cellular and molecular processes.The contemporary treatment options are limited,with surgical intervention as the gold-standard method;however,each treatment option has its associated limitations,especially when the injury is severe with a large gap.Recent advancements in cell-based therapy and cell-free therapy approaches using stem cell-derived soluble and insoluble components of the cell secretome are fast-emerging therapeutic approaches to treating acute and chronic PNI.The recent pilot study is a leap forward in the field,which is expected to pave the way for more enormous,systematic,and well-designed clinical trials to assess the therapeutic efficacy of mesenchymal stem cell-derived exosomes as a bio-drug either alone or as part of a combinatorial approach,in an attempt synergize the best of novel treatment approaches to address the complexity of the neural repair and regeneration.展开更多
Wharton’s jelly mesenchymal stem cells(WJ-MSCs)are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries.WJ-MSCs are more naïve...Wharton’s jelly mesenchymal stem cells(WJ-MSCs)are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries.WJ-MSCs are more naïve and have a better safety profile,making them suitable for both autologous and allogeneic transplantations.This review highlights the regenerative potential of WJ-MSCs and their clinical applications in mitigating various types of radiation injuries.In this review,we will also describe why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine along with a balanced view on their strengths and weaknesses.Finally,the most updated literature related to both preclinical and clinical usage of WJ-MSCs for their potential application in the regeneration of tissues and organs will also be compiled.展开更多
BACKGROUND Mesenchymal stem cells(MSCs)as living biopharmaceuticals with unique properties,i.e.,stemness,viability,phenotypes,paracrine activity,etc.,need to be administered such that they reach the target site,mainta...BACKGROUND Mesenchymal stem cells(MSCs)as living biopharmaceuticals with unique properties,i.e.,stemness,viability,phenotypes,paracrine activity,etc.,need to be administered such that they reach the target site,maintaining these properties unchanged and are retained at the injury site to participate in the repair process.Route of delivery(RoD)remains one of the critical determinants of safety and efficacy.This study elucidates the safety and effectiveness of different RoDs of MSC treatment in heart failure(HF)based on phase II randomized clinical trials(RCTs).We hypothesize that the RoD modulates the safety and efficacy of MSCbased therapy and determines the outcome of the intervention.AIM To investigate the effect of RoD of MSCs on safety and efficacy in HF patients.METHODS RCTs were retrieved from six databases.Safety endpoints included mortality and serious adverse events(SAEs),while efficacy outcomes encompassed changes in left ventricular ejection fraction(LVEF),6-minute walk distance(6MWD),and pro-B-type natriuretic peptide(pro-BNP).Subgroup analyses on RoD were performed for all study endpoints.RESULTS Twelve RCTs were included.Overall,MSC therapy demonstrated a significant decrease in mortality[relative risk(RR):0.55,95%confidence interval(95%CI):0.33-0.92,P=0.02]compared to control,while SAE outcomes showed no significant difference(RR:0.84,95%CI:0.66-1.05,P=0.11).RoD subgroup analysis revealed a significant difference in SAE among the transendocardial(TESI)injection subgroup(RR=0.71,95%CI:0.54-0.95,P=0.04).The pooled weighted mean difference(WMD)demonstrated an overall significant improvement of LVEF by 2.44%(WMD:2.44%,95%CI:0.80-4.29,P value≤0.001),with only intracoronary(IC)subgroup showing significant improvement(WMD:7.26%,95%CI:5.61-8.92,P≤0.001).Furthermore,the IC delivery route significantly improved 6MWD by 115 m(WMD=114.99 m,95%CI:91.48-138.50),respectively.In biochemical efficacy outcomes,only the IC subgroup showed a significant reduction in pro-BNP by-860.64 pg/mL(WMD:-860.64 pg/Ml,95%CI:-944.02 to-777.26,P=0.001).CONCLUSION Our study concluded that all delivery methods of MSC-based therapy are safe.Despite the overall benefits in efficacy,the TESI and IC routes provided better outcomes than other methods.Larger-scale trials are warranted before implementing MSC-based therapy in routine clinical practice.展开更多
BACKGROUND Knee osteoarthritis(KOA)is a common orthopedic condition with an uncertain etiology,possibly involving genetics and biomechanics.Factors like changes in chondrocyte microenvironment,oxidative stress,inflamm...BACKGROUND Knee osteoarthritis(KOA)is a common orthopedic condition with an uncertain etiology,possibly involving genetics and biomechanics.Factors like changes in chondrocyte microenvironment,oxidative stress,inflammation,and immune responses affect KOA development.Early-stage treatment options primarily target symptom relief.Mesenchymal stem cells(MSCs)show promise for treatment,despite challenges.Recent research highlights microRNAs(miRNAs)within MSC-released extracellular vesicles that can potentially promote cartilage regeneration and hinder KOA progression.This suggests exosomes(Exos)as a promising avenue for future treatment.While these findings emphasize the need for effective KOA progression management,further safety and efficacy validation for Exos is essential.AIM To explore miR-29a’s role in KOA,we’ll create miR-29a-loaded vesicles,testing for early treatment in rat models.METHODS Extraction of bone marrow MSC-derived extracellular vesicles,preparation of engineered vesicles loaded with miR-29a using ultrasonication,and identification using quantitative reverse transcription polymerase chain reaction;after establi-shing a rat model of KOA,rats were randomly divided into three groups:Blank control group injected with saline,normal extracellular vesicle group injected with normal extracellular vesicle suspension,and engineered extrace-llular vesicle group injected with engineered extracellular vesicle suspension.The three groups evaluation,histological detection,and immunohistochemical detection to compare and evaluate the progress of various forms of arthritis.RESULTS General behavioral observation results showed that the extracellular vesicle group and engineered extracellular vesicle group had better performance in all four indicators of pain,gait,joint mobility,and swelling compared to the blank control group.Additionally,the engineered extracellular vesicle group had better pain relief at 4 wk and better knee joint mobility at 8 wk compared to the normal extracellular vesicle group.Imaging examination results showed that the blank control group had the fastest progression of arthritis,the normal extracellular vesicle group had a relatively slower progression,and the engineered extracellular vesicle group had the slowest progression.Gross histological observation results showed that the blank control group had the most obvious signs of arthritis,the normal extracellular vesicle group showed signs of arthritis,and the engineered extracellular vesicle group showed no significant signs of arthritis.Using the Pelletier gross score evaluation,the engineered extracellular vesicle group had the slowest progression of arthritis.Results from two types of staining showed that the articular cartilage of rats in the normal extracellular vesicle and engineered extracellular vesicle groups was significantly better than that of the blank control group,and the engineered extracellular vesicle group had the best cartilage cell and joint surface condition.Immunohistochemical detection of type II collagen and proteoglycan showed that the extracellular matrix of cartilage cells in the normal extracellular vesicle and engineered extracellular vesicle groups was better than that of the blank control group.Compared to the normal extracellular vesicle group,the engineered extracellular vesicle group had a better regulatory effect on the extracellular matrix of cartilage cells.CONCLUSION Engineered Exos loaded with miR-29a can exert anti-inflammatory effects and maintain extracellular matrix stability,thereby protecting articular cartilage,and slowing the progression of KOA.展开更多
In this editorial,we offer our perspective on the groundbreaking study entitled“Hypoxia and inflammatory factor preconditioning enhances the immunosup-pressive properties of human umbilical cord mesenchymal stem cell...In this editorial,we offer our perspective on the groundbreaking study entitled“Hypoxia and inflammatory factor preconditioning enhances the immunosup-pressive properties of human umbilical cord mesenchymal stem cells”,recently published in World Journal of Stem Cells.Despite over three decades of research on the clinical application of mesenchymal stem cells(MSCs),only a few therapeutic products have made it to clinical use,due to multiple preclinical and clinical challenges yet to be addressed.The study proved the hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics,which revealed the combination of inflammatory factors and hypoxic preconditioning offers a promising approach to enhance the function of MSCs.As we delve deeper into the intricacies of pretreat-ment methodologies,we anticipate a transformative shift in the landscape of MSC-based therapies,ultimately contributing to improved patient outcomes and advancing the field as a whole.展开更多
Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alle...Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alleviating clinical symptoms and delaying disease progression but have not shown significant therapeutic effects in patients with lung diseases.Human umbilical cord-derived mesenchymal stem cells(UC-MSCs)isolated from the human UC have the capacity for self-renewal and multilineage differentiation.Moreover,in recent years,these cells have been demonstrated to have unique advantages in the treatment of lung diseases.We searched the Public Clinical Trial Database and found 55 clinical trials involving UC-MSC therapy for pulmonary diseases,including coronavirus disease 2019,acute respiratory distress syndrome,bron-chopulmonary dysplasia,chronic obstructive pulmonary disease,and pulmonary fibrosis.In this review,we summarize the characteristics of these registered clinical trials and relevant published results and explore in depth the challenges and opportunitiesfaced in clinical application.Moreover,the underlying mole-cular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are also analyzed in depth.In brief,this comprehensive review and detailed analysis of these clinical trials can be expected to provide a scientific reference for future large-scale clinical application.展开更多
Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essent...Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essential to restore heart function.MSCs can be easily isolated from different sources,including bone marrow,adipose tissues,umbilical cord,and dental pulp.MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders.In this review,we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function.展开更多
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)...Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.展开更多
基金Supported by the FONCYT,Argentina(PICT 2016-#1093)CONICET,Argentina(PIP2014-2016,#300)Fundación Florencio Fiorini(Subsidio 2021-2022),Argentina.
文摘Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cells(MSCs)are critical for BM/bone homeostasis,and failures in their functionality,transform the BM into a premetastatic niche(PMN).We previously found that BM-MSCs from advanced breast cancer patients(BCPs,infiltrative ductal carcinoma,stage III-B)have an abnormal profile.This work aims to study some of the metabolic and molecular mechanisms underlying MSCs shift from a normal to an abnormal profile in this group of patients.A comparative analysis was undertaken,which included self-renewal capacity,morphology,proliferation capacity,cell cycle,reactive oxygen species(ROS)levels,and senescence-associatedβ‑galactosidase(SA‑β‑gal)staining of BMderived MSCs isolated from 14 BCPs and 9 healthy volunteers(HVs).Additionally,the expression and activity of the telomerase subunit TERT,as well as telomere length,were measured.Expression levels of pluripotency,osteogenic,and osteoclastogenic genes(OCT-4,SOX-2,M-CAM,RUNX-2,BMP-2,CCL-2,M-CSF,and IL-6)were also determined.The results showed that MSCs from BCPs had reduced,self-renewal and proliferation capacity.These cells also exhibited inhibited cell cycle progression and phenotypic changes,such as an enlarged and flattened appearance.Additionally,there was an increase in ROS and senescence levels and a decrease in the functional capacity of TERT to preserve telomere length.We also found an increase in pro-inflammatory/pro-osteoclastogenic gene expression and a decrease in pluripotency gene expression.We conclude that these changes could be responsible for the abnormal functional profile that MSCs show in this group of patients.
文摘Allogeneic hematopoietic stem cell transplantation is a deterministic curative procedure for various hematologic disorders and congenital immunodeficiency.Despite its increased use,the mortality rate for patients undergoing this procedure remains high,mainly due to the perceived risk of exacerbating graft-versushost disease(GVHD).However,even with immunosuppressive agents,some patients still develop GVHD.Advanced mesenchymal stem/stromal cell(MSC)strategies have been proposed to achieve better therapeutic outcomes,given their immunosuppressive potential.However,the efficacy and trial designs have varied among the studies,and some research findings appear contradictory due to the challenges in characterizing the in vivo effects of MSCs.This review aims to provide real insights into this clinical entity,emphasizing diagnostic,and therapeutic considerations and generating pathophysiology hypotheses to identify research avenues.The indications and timing for the clinical application of MSCs are still subject to debate.
基金Supported by the Henan Province Science and Technique Bureau R&D Project,No.222102310228.
文摘Mesenchymal stromal/stem cells(MSCs)are currently applied in regenerative medicine and tissue engineering.Numerous clinical studies have indicated that MSCs from different tissue sources can provide therapeutic benefits for patients.MSCs derived from either human adult or perinatal tissues have their own unique advantages in their medical practices.Usually,clinical studies are conducted by using of cultured MSCs after thawing or short-term cryopreserved-then-thawed MSCs prior to administration for the treatment of a wide range of diseases and medical disorders.Currently,cryogenically banking perinatal MSCs for potential personalized medicine for later use in lifetime has raised growing interest in China as well as in many other countries.Meanwhile,this has led to questions regarding the availability,stability,consistency,multipotency,and therapeutic efficiency of the potential perinatal MSC-derived therapeutic products after longterm cryostorage.This opinion review does not minimize any therapeutic benefit of perinatal MSCs in many diseases after short-term cryopreservation.This article mainly describes what is known about banking perinatal MSCs in China and,importantly,it is to recognize the limitation and uncertainty of the perinatal MSCs stored in cryobanks for stem cell medical treatments in whole life.This article also provides several recommendations for banking of perinatal MSCs for potentially future personalized medicine,albeit it is impossible to anticipate whether the donor will benefit from banked MSCs during her/his lifetime.
基金Supported by National Natural Science Foundation of China,No.81703533Natural Science Foundation of Shanghai,No.20ZR1449500+2 种基金Shanghai Jiao Tong University Medical Engineering Cross Fund,No.YG2019GD02Science Technology Development Fund of Shanghai Pudong New Area,No.PKJ2020-Y28Medical Discipline Construction Project of Pudong Health Committee of Shanghai,No.PWYts2021-05.
文摘Osteoporosis is a systemic bone disease,which leads to decreased bone mass and an increased risk of fragility fractures.Currently,there are many anti-resorption drugs and osteosynthesis drugs,which are effective in the treatment of osteoporosis,but their usage is limited due to their contraindications and side effects.In regenerative medicine,the unique repair ability of mesenchymal stem cells(MSCs)has been favored by researchers.The exosomes secreted by MSCs have signal transduction and molecular delivery mechanisms,which may have therapeutic effects.In this review,we describe the regulatory effects of MSCs-derived exosomes on osteoclasts,osteoblasts,and bone immunity.We aim to summarize the preclinical studies of exosome therapy in osteoporosis.Furth-ermore,we speculate that exosome therapy can be a future direction to improve bone health.
基金Supported by Shandong Provincial Natural Science Foundation,No.ZR2020QC097China Postdoctoral Science Foundation,No.2019M661033+7 种基金Jiangxi Key New Product Incubation Program Funded by Technical Innovation Guidance Program of Shangrao city,No.2020G002Tianjin Science and Technology Project for Overseas Students,No.JH-20180070802Natural Science Foundation of Tianjin,No.19JCQNJC12500Major Project of Fundamental Research Funds of the Central Public Welfare Scientific Research Institutes of the Chinese Academy of Medical Sciences,No.2018PT31048Major Project of Fundamental Research Funds of the Central Public Welfare Scientific Research Institutes of the Chinese Academy of Medical Sciences,No.2019PT310013National Science and Technology Major Projects of China for“Major New Drugs Innovation and Development”,No.2014ZX09508002-003National Natural Science Foundation of China,No.81330015and Science and Technology Project of Tianjin,No.17ZXSCSY00030.
文摘The ongoing outbreak of coronavirus disease 2019(COVID-19)caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens millions of people’s life health.Two current studies have indicated a favorable role for mesenchymal stem/stromal cells(MSCs)in clinical remission of COVID-19 associated pulmonary diseases,yet the systematical elaboration of the therapeutics and underlying mechanism is far from satisfaction.In the present review,we summarize the therapeutic potential of MSCs in COVID-19 associated pulmonary diseases such as pneumonia induced acute lung injury,acute respiratory distress syndrome,and pulmonary fibrosis.Furthermore,we review the underlying mechanism of MSCs including direct-and trans-differentiation,autocrine and paracrine anti-inflammatory effects,homing,and neovascularization,as well as constitutive microenvironment.Finally,we discuss the prospects and supervision of MSC-based cytotherapy for COVID-19 management before large-scale application in clinical practice.Collectively,this review supplies overwhelming new references for understanding the landscapes of MSCs in the remission of COVID-19 associated pulmonary diseases.
基金Supported by the National Institute on Aging of the National Institutes of Health under Award No.P30AG010129the UC Davis Alzheimer's Disease Center Pilot Program,No.5R01NS100761-02 and No.1R01NS115860-01A1+1 种基金the Shriners Hospitals for Children Research Grants,No.85108-NCA-19 and No.85135-NCA-21the Shriners Hospitals for Children Postdoctoral Fellowship,No.84705-NCA-19.
文摘Mesenchymal stem/stromal cells(MSCs)are extensively studied as cell-therapy agents for neurological diseases.Recent studies consider exosomes secreted by MSCs as important mediators for MSCs’neuroprotective functions.Exosomes transfer functional molecules including proteins,lipids,metabolites,DNAs,and coding and non-coding RNAs from MSCs to their target cells.Emerging evidence shows that exosomal microRNAs(miRNAs)play a key role in the neuroprotective properties of these exosomes by targeting several genes and regulating various biological processes.Multiple exosomal miRNAs have been identified to have neuroprotective effects by promoting neurogenesis,neurite remodeling and survival,and neuroplasticity.Thus,exosomal miRNAs have significant therapeutic potential for neurological disorders such as stroke,traumatic brain injury,and neuroinflammatory or neurodegenerative diseases and disorders.This review discusses the neuroprotective effects of selected miRNAs(miR-21,miR-17-92,miR-133,miR-138,miR-124,miR-30,miR146a,and miR-29b)and explores their mechanisms of action and applications for the treatment of various neurological disease and disorders.It also provides an overview of state-of-the-art bioengineering approaches for isolating exosomes,optimizing their yield and manipulating the miRNA content of their cargo to improve their therapeutic potential.
基金Supported by the National Natural Science Foundation of China,Nos.81500207,81670458,and 81470393Shanghai Municipal Health and Family Planning Commission,No.ZY(2018-2020)-FWTX-2007+4 种基金Shanghai Key Medical Discipline for Critical Care Medicine,No.2017zz02017the National Key Research and Development Program of China,No.2017YFA0105600Major Program of Development Fund for Shanghai Zhangjiang National Innovtaion Demonstration Zone,No.ZJ2018-ZD-004the Science and Technology Commission of Shanghai Municipality,No.17431906600and the Top-level Clinical Discipline Project of Shanghai Pudong,No.PWYgf2018-05.
文摘Mesenchymal stem/stromal cells(MSCs)have various properties that make them promising candidates for stem cell-based therapies in clinical settings.These include self-renewal,multilineage differentiation,and immunoregulation.However,recent studies have confirmed that aging is a vital factor that limits their function and therapeutic properties as standardized clinical products.Understanding the features of senescence and exploration of cell rejuvenation methods are necessary to develop effective strategies that can overcome the shortage and instability of MSCs.This review will summarize the current knowledge on characteristics and functional changes of aged MSCs.Additionally,it will highlight cell rejuvenation strategies such as molecular regulation,noncoding RNA modifications,and microenvironment controls that may enhance the therapeutic potential of MSCs in clinical settings.
文摘Theoretically, mesenchymal stem cells (MSCs) are very promising as adjuvanttherapy to alleviate coronavirus disease 2019 (COVID-19)-associated acute lunginjury and cytokine storm. Several published studies, which used MSCs toalleviate COVID-19-associated acute lung injury and cytokine storm, reportedpromising results. However, the evidence came from a case report, case series,and clinical trials with a limited number of participants. Therefore, more studiesare needed to get robust proof of MSC beneficial effects.
基金funded by the Spanish Ministry of Economy and Competitiveness,No.PID(2019)-106498GB-100 (to MVS)by the Instituto de Salud CarlosⅢ,Fondo Europeo de Desarrollo Regional"Una manera de hacer Europa",No.PI19/00071 (to MAB)+2 种基金the RETICS subprograms of Spanish Networks OftoRed,Nos.RD16/0008/0026 (to DGB) and RD16/0008/0016 (to DGB)RICORS Terav,No.RD16/0011/0001 (to DGB)from Instituto de Salud CarlosⅢby the Fundacion Seneca,Agencia de Cienciay Tecnologia Región de Murcia,No.19881/GERM/15 (all to MVS)
文摘Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.
文摘Non-alcoholic fatty liver disease(NAFLD)has emerged as a significant health challenge,characterized by its widespread prevalence,intricate natural progression and multifaceted pathogenesis.Although NAFLD initially presents as benign fat accumulation,it may progress to steatosis,non-alcoholic steatohepatitis,cirrhosis,and hepatocellular carcinoma.Mesenchymal stem cells(MSCs)are recognized for their intrinsic self-renewal,superior biocompatibility,and minimal immunogenicity,positioning them as a therapeutic innovation for liver diseases.Therefore,this review aims to elucidate the potential roles of MSCs in alleviating the progression of NAFLD by alteration of underlying molecular pathways,including glycolipid metabolism,inflammation,oxidative stress,endoplasmic reticulum stress,and fibrosis.The insights are expected to provide further understanding of the potential of MSCs in NAFLD therapeutics,and support the development of MSC-based therapy in the treatment of NAFLD.
基金approved by the medical ethics committee of the authors’institution(protocol number:56733164-203-E.5863).
文摘BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the existence of several small compounds,Despite the objective of achieving full functional restoration by surgical intervention,the persistent challenge of inadequate functional recovery remains a significant concern in the context of peripheral nerve injuries.AIM To examine the impact of exosomes on the process of functional recovery following a complete radial nerve damage.METHODS A male individual,aged 24,who is right-hand dominant and an immigrant,arrived with an injury caused by a knife assault.The cut is located on the left arm,specifically below the elbow.The neurological examination and electrodiagnostic testing reveal evidence of left radial nerve damage.The sural autograft was utilized for repair,followed by the application of 1 mL of mesenchymal stem cell-derived exosome,comprising 5 billion microvesicles.This exosome was split into four equal volumes of 0.25 mL each and delivered microsurgically to both the proximal and distal stumps using the subepineural pathway.The patient was subjected to a period of 180 d during which they had neurological examination and electrodiagnostic testing.RESULTS The duration of the patient’s follow-up period was 180 d.An increasing Tinel’s sign and sensory-motor recovery were detected even at the 10th wk following nerve grafting.Upon the conclusion of the 6-mo post-treatment period,an evaluation was conducted to measure the extent of improvement in motor and sensory functions of the nerve.This assessment was based on the British Medical Research Council scale and the Mackinnon-Dellon scale.The results indicated that the level of improvement in motor function was classified as M5,denoting an excellent outcome.Additionally,the level of improvement in sensory function was classified as S3+,indicating a good outcome.It is noteworthy that these assessments were conducted in the absence of physical therapy.At the 10th wk post-injury,despite the persistence of substantial axonal damage,the nerve exhibited indications of nerve re-innervation as evidenced by control electromyography(EMG).In contrast to the preceding.EMG analysis revealed a significant electrophysiological enhancement in the EMG conducted at the 6th-mo follow-up,indicating ongoing regeneration.CONCLUSION Enhanced comprehension of the neurobiological ramifications associated with peripheral nerve damage,as well as the experimental and therapy approaches delineated in this investigation,holds the potential to catalyze future clinical progress.
基金Supported by the National Natural Science Foundation of China,No.82271843 and 31700779the Key Project supported by Medical Science and Technology Development Foundation,Nanjing Department of Health,No.ZKX20019the Natural Science Foundation of Jiangsu Province,No.BK20200137.
文摘Mesenchymal stem cells(MSCs)are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts,chondrocytes and adipocytes.The transformation of multipotent MSCs to adipocytes mainly involves two subsequent steps from MSCs to preadipocytes and further preadipocytes into adipocytes,in which the process MSCs are precisely controlled to commit to the adipogenic lineage and then mature into adipocytes.Previous studies have shown that the master transcription factors C/enhancer-binding protein alpha and peroxisome proliferation activator receptor gamma play vital roles in adipogenesis.However,the mechanism underlying the adipogenic differentiation of MSCs is not fully understood.Here,the current knowledge of adipogenic differentiation in MSCs is reviewed,focusing on signaling pathways,noncoding RNAs and epigenetic effects on DNA methylation and acetylation during MSC differentiation.Finally,the relationship between maladipogenic differentiation and diseases is briefly discussed.We hope that this review can broaden and deepen our understanding of how MSCs turn into adipocytes.
文摘Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving multifaceted cellular and molecular processes.The contemporary treatment options are limited,with surgical intervention as the gold-standard method;however,each treatment option has its associated limitations,especially when the injury is severe with a large gap.Recent advancements in cell-based therapy and cell-free therapy approaches using stem cell-derived soluble and insoluble components of the cell secretome are fast-emerging therapeutic approaches to treating acute and chronic PNI.The recent pilot study is a leap forward in the field,which is expected to pave the way for more enormous,systematic,and well-designed clinical trials to assess the therapeutic efficacy of mesenchymal stem cell-derived exosomes as a bio-drug either alone or as part of a combinatorial approach,in an attempt synergize the best of novel treatment approaches to address the complexity of the neural repair and regeneration.
文摘Wharton’s jelly mesenchymal stem cells(WJ-MSCs)are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries.WJ-MSCs are more naïve and have a better safety profile,making them suitable for both autologous and allogeneic transplantations.This review highlights the regenerative potential of WJ-MSCs and their clinical applications in mitigating various types of radiation injuries.In this review,we will also describe why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine along with a balanced view on their strengths and weaknesses.Finally,the most updated literature related to both preclinical and clinical usage of WJ-MSCs for their potential application in the regeneration of tissues and organs will also be compiled.
文摘BACKGROUND Mesenchymal stem cells(MSCs)as living biopharmaceuticals with unique properties,i.e.,stemness,viability,phenotypes,paracrine activity,etc.,need to be administered such that they reach the target site,maintaining these properties unchanged and are retained at the injury site to participate in the repair process.Route of delivery(RoD)remains one of the critical determinants of safety and efficacy.This study elucidates the safety and effectiveness of different RoDs of MSC treatment in heart failure(HF)based on phase II randomized clinical trials(RCTs).We hypothesize that the RoD modulates the safety and efficacy of MSCbased therapy and determines the outcome of the intervention.AIM To investigate the effect of RoD of MSCs on safety and efficacy in HF patients.METHODS RCTs were retrieved from six databases.Safety endpoints included mortality and serious adverse events(SAEs),while efficacy outcomes encompassed changes in left ventricular ejection fraction(LVEF),6-minute walk distance(6MWD),and pro-B-type natriuretic peptide(pro-BNP).Subgroup analyses on RoD were performed for all study endpoints.RESULTS Twelve RCTs were included.Overall,MSC therapy demonstrated a significant decrease in mortality[relative risk(RR):0.55,95%confidence interval(95%CI):0.33-0.92,P=0.02]compared to control,while SAE outcomes showed no significant difference(RR:0.84,95%CI:0.66-1.05,P=0.11).RoD subgroup analysis revealed a significant difference in SAE among the transendocardial(TESI)injection subgroup(RR=0.71,95%CI:0.54-0.95,P=0.04).The pooled weighted mean difference(WMD)demonstrated an overall significant improvement of LVEF by 2.44%(WMD:2.44%,95%CI:0.80-4.29,P value≤0.001),with only intracoronary(IC)subgroup showing significant improvement(WMD:7.26%,95%CI:5.61-8.92,P≤0.001).Furthermore,the IC delivery route significantly improved 6MWD by 115 m(WMD=114.99 m,95%CI:91.48-138.50),respectively.In biochemical efficacy outcomes,only the IC subgroup showed a significant reduction in pro-BNP by-860.64 pg/mL(WMD:-860.64 pg/Ml,95%CI:-944.02 to-777.26,P=0.001).CONCLUSION Our study concluded that all delivery methods of MSC-based therapy are safe.Despite the overall benefits in efficacy,the TESI and IC routes provided better outcomes than other methods.Larger-scale trials are warranted before implementing MSC-based therapy in routine clinical practice.
基金Project of the National Natural Science Foundation of China,No.82172398Key Research Project of the Department of Education of Liaoning Province,No.LJKZZ20220148+1 种基金Dalian Medical Science Research Project,No.2111038Dalian Dengfeng Plan Medical Key Specialty Construction Project(2021),No.243.
文摘BACKGROUND Knee osteoarthritis(KOA)is a common orthopedic condition with an uncertain etiology,possibly involving genetics and biomechanics.Factors like changes in chondrocyte microenvironment,oxidative stress,inflammation,and immune responses affect KOA development.Early-stage treatment options primarily target symptom relief.Mesenchymal stem cells(MSCs)show promise for treatment,despite challenges.Recent research highlights microRNAs(miRNAs)within MSC-released extracellular vesicles that can potentially promote cartilage regeneration and hinder KOA progression.This suggests exosomes(Exos)as a promising avenue for future treatment.While these findings emphasize the need for effective KOA progression management,further safety and efficacy validation for Exos is essential.AIM To explore miR-29a’s role in KOA,we’ll create miR-29a-loaded vesicles,testing for early treatment in rat models.METHODS Extraction of bone marrow MSC-derived extracellular vesicles,preparation of engineered vesicles loaded with miR-29a using ultrasonication,and identification using quantitative reverse transcription polymerase chain reaction;after establi-shing a rat model of KOA,rats were randomly divided into three groups:Blank control group injected with saline,normal extracellular vesicle group injected with normal extracellular vesicle suspension,and engineered extrace-llular vesicle group injected with engineered extracellular vesicle suspension.The three groups evaluation,histological detection,and immunohistochemical detection to compare and evaluate the progress of various forms of arthritis.RESULTS General behavioral observation results showed that the extracellular vesicle group and engineered extracellular vesicle group had better performance in all four indicators of pain,gait,joint mobility,and swelling compared to the blank control group.Additionally,the engineered extracellular vesicle group had better pain relief at 4 wk and better knee joint mobility at 8 wk compared to the normal extracellular vesicle group.Imaging examination results showed that the blank control group had the fastest progression of arthritis,the normal extracellular vesicle group had a relatively slower progression,and the engineered extracellular vesicle group had the slowest progression.Gross histological observation results showed that the blank control group had the most obvious signs of arthritis,the normal extracellular vesicle group showed signs of arthritis,and the engineered extracellular vesicle group showed no significant signs of arthritis.Using the Pelletier gross score evaluation,the engineered extracellular vesicle group had the slowest progression of arthritis.Results from two types of staining showed that the articular cartilage of rats in the normal extracellular vesicle and engineered extracellular vesicle groups was significantly better than that of the blank control group,and the engineered extracellular vesicle group had the best cartilage cell and joint surface condition.Immunohistochemical detection of type II collagen and proteoglycan showed that the extracellular matrix of cartilage cells in the normal extracellular vesicle and engineered extracellular vesicle groups was better than that of the blank control group.Compared to the normal extracellular vesicle group,the engineered extracellular vesicle group had a better regulatory effect on the extracellular matrix of cartilage cells.CONCLUSION Engineered Exos loaded with miR-29a can exert anti-inflammatory effects and maintain extracellular matrix stability,thereby protecting articular cartilage,and slowing the progression of KOA.
基金National Natural Science Foundation of China,No.82172196,No.82372507,and No.81971891.
文摘In this editorial,we offer our perspective on the groundbreaking study entitled“Hypoxia and inflammatory factor preconditioning enhances the immunosup-pressive properties of human umbilical cord mesenchymal stem cells”,recently published in World Journal of Stem Cells.Despite over three decades of research on the clinical application of mesenchymal stem cells(MSCs),only a few therapeutic products have made it to clinical use,due to multiple preclinical and clinical challenges yet to be addressed.The study proved the hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics,which revealed the combination of inflammatory factors and hypoxic preconditioning offers a promising approach to enhance the function of MSCs.As we delve deeper into the intricacies of pretreat-ment methodologies,we anticipate a transformative shift in the landscape of MSC-based therapies,ultimately contributing to improved patient outcomes and advancing the field as a whole.
文摘Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alleviating clinical symptoms and delaying disease progression but have not shown significant therapeutic effects in patients with lung diseases.Human umbilical cord-derived mesenchymal stem cells(UC-MSCs)isolated from the human UC have the capacity for self-renewal and multilineage differentiation.Moreover,in recent years,these cells have been demonstrated to have unique advantages in the treatment of lung diseases.We searched the Public Clinical Trial Database and found 55 clinical trials involving UC-MSC therapy for pulmonary diseases,including coronavirus disease 2019,acute respiratory distress syndrome,bron-chopulmonary dysplasia,chronic obstructive pulmonary disease,and pulmonary fibrosis.In this review,we summarize the characteristics of these registered clinical trials and relevant published results and explore in depth the challenges and opportunitiesfaced in clinical application.Moreover,the underlying mole-cular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are also analyzed in depth.In brief,this comprehensive review and detailed analysis of these clinical trials can be expected to provide a scientific reference for future large-scale clinical application.
文摘Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essential to restore heart function.MSCs can be easily isolated from different sources,including bone marrow,adipose tissues,umbilical cord,and dental pulp.MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders.In this review,we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function.
基金supported by the Fujian Minimally Invasive Medical Center Foundation,No.2128100514(to CC,CW,HX)the Natural Science Foundation of Fujian Province,No.2023J01640(to CC,CW,ZL,HX)。
文摘Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.