Abstract: In this paper, we propose a mecha- nism for multicast data transmission in IEEE 802.16 mesh networks aimed at increasing the throughput by incorporating mini-slot spatial reuse. The proposed mechanism inclu...Abstract: In this paper, we propose a mecha- nism for multicast data transmission in IEEE 802.16 mesh networks aimed at increasing the throughput by incorporating mini-slot spatial reuse. The proposed mechanism includes two novel algorithms: a source-based multicast tree topology construction algorithm followed by an interference-aware multieast scheduling algorithm. The proposed multicast interfer- ence-aware scheduling algorithm can be ap- plied to both source-based and rendez- vous-based multicast tree topologies. Results of our simulation study show that in compari- son to the mechanism used for the IEEE 802.16's standard, the proposed multicast tree generation algorithm reduces the number of consumed mini-slots by 64% on average. Moreover, using the proposed interfer- ence-aware scheduling algorithm decreases the number of required mini-slots by a further 22% on average. Therefore, the proposed mul- ticast scheduling mechanism shows a higher throughput than the previous approaches and it is more scalable with respect to increasing the number of multicast groups as well as in- creasing the number of members inside each multicast group.展开更多
This paper proposes a distributed fair queuing algorithm which is based on compensation coordi- nation scheduling in wireless mesh networks, considering such problems as the location-dependent competition and unfair c...This paper proposes a distributed fair queuing algorithm which is based on compensation coordi- nation scheduling in wireless mesh networks, considering such problems as the location-dependent competition and unfair channel bandwidth allocation among nodes. The data communication process requiring the establishment of compensation coordination scheduling model is divided into three periods: the sending period, the compensation period and the dormancy period. According to model parameters, time constraint functions are designed to limit the execution length of each period. The algorithms guarantee that the nodes complete fair transmission of network packets together in accordance with the fixed coordination scheduling rule of the model. Simulations and analysis demonstrate the effectiveness of the proposed algorithm in network throughput and fairness.展开更多
文摘Abstract: In this paper, we propose a mecha- nism for multicast data transmission in IEEE 802.16 mesh networks aimed at increasing the throughput by incorporating mini-slot spatial reuse. The proposed mechanism includes two novel algorithms: a source-based multicast tree topology construction algorithm followed by an interference-aware multieast scheduling algorithm. The proposed multicast interfer- ence-aware scheduling algorithm can be ap- plied to both source-based and rendez- vous-based multicast tree topologies. Results of our simulation study show that in compari- son to the mechanism used for the IEEE 802.16's standard, the proposed multicast tree generation algorithm reduces the number of consumed mini-slots by 64% on average. Moreover, using the proposed interfer- ence-aware scheduling algorithm decreases the number of required mini-slots by a further 22% on average. Therefore, the proposed mul- ticast scheduling mechanism shows a higher throughput than the previous approaches and it is more scalable with respect to increasing the number of multicast groups as well as in- creasing the number of members inside each multicast group.
基金Supported by the National Natural Science Foundation of China (61071096, 61003233, 61073103 ) and the Research Fund for the Doctoral Program of Higher Education (20100162110012).
文摘This paper proposes a distributed fair queuing algorithm which is based on compensation coordi- nation scheduling in wireless mesh networks, considering such problems as the location-dependent competition and unfair channel bandwidth allocation among nodes. The data communication process requiring the establishment of compensation coordination scheduling model is divided into three periods: the sending period, the compensation period and the dormancy period. According to model parameters, time constraint functions are designed to limit the execution length of each period. The algorithms guarantee that the nodes complete fair transmission of network packets together in accordance with the fixed coordination scheduling rule of the model. Simulations and analysis demonstrate the effectiveness of the proposed algorithm in network throughput and fairness.