期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Existence and Stability of Equilibrium Points in the Robe’s Restricted Three-Body Problem with Variable Masses
1
作者 Jagadish Singh Oni Leke 《International Journal of Astronomy and Astrophysics》 2013年第2期113-122,共10页
The positions and linear stability of the equilibrium points of the Robe’s circular restricted three-body problem, are generalized to include the effect of mass variations of the primaries in accordance with the unif... The positions and linear stability of the equilibrium points of the Robe’s circular restricted three-body problem, are generalized to include the effect of mass variations of the primaries in accordance with the unified Meshcherskii law, when the motion of the primaries is determined by the Gylden-Meshcherskii problem. The autonomized dynamical system with constant coefficients here is possible, only when the shell is empty or when the densities of the medium and the infinitesimal body are equal. We found that the center of the shell is an equilibrium point. Further, when k﹥1;k?being the constant of a particular integral of the Gylden-Meshcherskii problem;a pair of equilibrium point, lying in the -plane?with each forming triangles with the center of the shell and the second primary exist. Several of the points exist depending on k;hence every point inside the shell is an equilibrium point. The linear stability of the equilibrium points is examined and it is seen that the point at the center of the shell of the autonomized system is conditionally stable;while that of the non-autonomized system is unstable. The triangular equilibrium points on the -plane of both systems are unstable. 展开更多
关键词 Robe’s PROBLEM meshcherskii law GMP Equilibruim POINTS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部