The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precis...The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precision control.Establishing one spacecraftwith two laser links,compared to one spacecraft with a single laser link,requires an upgraded decoupling algorithmfor the link establishment.The decoupling algorithmwe designed reassigns the degrees of freedomand forces in the control loop to ensure sufficient degrees of freedomfor optical axis control.In addressing the distinct dynamic characteristics of different degrees of freedom,a transfer function compensation method is used in the decoupling process to further minimize motion coupling.The open-loop frequency response of the systemis obtained through simulation.The upgraded decoupling algorithms effectively reduce the open-loop frequency response by 30 dB.The transfer function compensation method efficiently suppresses the coupling of low-frequency noise.展开更多
Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merg...Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merger dynamics that bridge these two sets of observables remain enigmatic.This includes if,and when,the post-merger remnant star collapses to a black hole,and what are the necessary conditions to power a short gamma-ray burst,and other observed electromagnetic counterparts.Our focus is on the detection of gravitational wave(GW)emissions from hyper-massive neutron stars(NSs)formed through binary neutron star(BNS)mergers.Utilizing several kilohertz GW detectors,we simulate BNS mergers within the detection limits of LIGO-Virgo-KARGA O4.Our objective is to ascertain the fraction of simulated sources that may emit detectable post-merger GW signals.For kilohertz detectors equipped with a new cavity design,we estimate that approximately 1.1%-32%of sources would emit a detectable post-merger GW signal.This fraction is contingent on the mass converted into gravitational wave energy,ranging from 0.01M_(sun)to 0.1M_(sun).Furthermore,by evaluating other well-regarded proposed kilohertz GW detectors,we anticipate that the fraction can increase to as much as 2.1%-61%under optimal performance conditions.展开更多
To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Differen...To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm.展开更多
The recently observed gravitational wave background is explained in terms of the quantum modification of the general relativity (Qmoger). Some UFO, FRB and supernova flares also can be explained in terms of Qmoger.
The pitfalls of applying the commonly used definition of available gravitational potential energy (AGPE) to the world oceans are re-examined. It is proposed that such definition should apply to the meso-scale proble...The pitfalls of applying the commonly used definition of available gravitational potential energy (AGPE) to the world oceans are re-examined. It is proposed that such definition should apply to the meso-scale problems in the oceans, not the global scale. Based on WOA98 climatological data, the meso-scale AGPE in the world oceans is estimated. Unlike previous results by Oort et al. , the meso-scale AGPE is large wherever there is a strong horizontal density gradient. The distribution of meso-scale AGPE reveals the close connection between the baroclinic instability and the release of gravitational potential energy stored within the scale of Rossby deformation radius.展开更多
Observing and timing a group of millisecond pulsars with high rotational stability enables the direct detection of gravitational waves(GWs).The GW signals can be identified from the spatial correlations encoded in the...Observing and timing a group of millisecond pulsars with high rotational stability enables the direct detection of gravitational waves(GWs).The GW signals can be identified from the spatial correlations encoded in the times-of-arrival of widely spaced pulsar-pairs.The Chinese Pulsar Timing Array(CPTA)is a collaboration aiming at the direct GW detection with observations carried out using Chinese radio telescopes.This short article serves as a“table of contents”for a forthcoming series of papers related to the CPTA Data Release 1(CPTA DR1)which uses observations from the Five-hundred-meter Aperture Spherical radio Telescope.Here,after summarizing the time span and accuracy of CPTA DR1,we report the key results of our statistical inference finding a correlated signal with amplitude logA_(c)=-14.4_(-2.8)^(+1.0)for spectral index in the range ofα∈[-1.8,1.5]assuming a GW background(GWB)induced quadrupolar correlation.The search for the Hellings–Downs(HD)correlation curve is also presented,where some evidence for the HD correlation has been found that a 4.6σstatistical significance is achieved using the discrete frequency method around the frequency of 14 n Hz.We expect that the future International Pulsar Timing Array data analysis and the next CPTA data release will be more sensitive to the n Hz GWB,which could verify the current results.展开更多
Under most models of the early universe evolution, high-frequency gravitational waves (HFGWs) were produced. They are referred to as “relic” high-frequency gravitational waves or HFRGWs and their detection and measu...Under most models of the early universe evolution, high-frequency gravitational waves (HFGWs) were produced. They are referred to as “relic” high-frequency gravitational waves or HFRGWs and their detection and measurement could provide important information on the origin and development of our Universe – information that could not otherwise be obtained. So far three instruments have been built to detect and measure HFRGWs, but so far none of them has achieved the required sensitivity. This paper concerns another detector, originally proposed by Baker in 2000 and patented, which is based upon a recently discovered physical effect (the Li effect);this detector has accordingly been named the “Li-Baker detector.” The detector has been a joint development effort by the P. R. China and the United States HFGW research teams. A rigorous examination of the detector’s performance is important in the ongoing debate over the value of attempting to construct a Li-Baker detector and, in particular, an accurate prediction of its sensitivity in the presence of significant noise will decide whether the Li-Baker detector will be capable of detecting and measuring HFRGWs. The potential for useful HFRGW measurement is theoretically confirmed.展开更多
Resonant-mass gravitational wave detectors are reviewed from the concept of gravitational waves and its mathematical derivation, using Einstein's general relativity, to the present status of bars and spherical detect...Resonant-mass gravitational wave detectors are reviewed from the concept of gravitational waves and its mathematical derivation, using Einstein's general relativity, to the present status of bars and spherical detectors, and their prospects for the future, which include dual detectors and spheres with non-resonant transducers. The review not only covers technical aspects of detectors and sciences that will be done, but also analyzes the subject in a historical perspective, covering the various detection efforts over four decades, starting from Weber's pioneering work.展开更多
The second(O2)observational campaign of gravitational waves(GWs)organized by the LIGO/Virgo Collaborations has led to several breakthroughs such as the detection of GW signals from merger systems involving black holes...The second(O2)observational campaign of gravitational waves(GWs)organized by the LIGO/Virgo Collaborations has led to several breakthroughs such as the detection of GW signals from merger systems involving black holes or neutrons stars.During O2,14 GW alerts were sent to the astronomical community with sky regions mostly covering over hundreds of square degrees.Among them,six were finally confirmed as real astrophysical events.Since 2013,a new set of ground-based robotic telescopes called Ground-based Wide Angle Camera system(GWAC)project and its pathfinder mini-GWAC has been developed to contribute to the various challenges of multi-messenger and time domain astronomy.The GWAC system is built up in the framework of the ground-segment system of the SVOM mission that will be devoted to the study of the multi-wavelength transient sky in the next decade.During O2,only the mini-GWAC telescope network was fully operational.Due to the wide field of view and fast automatic follow-up capabilities of the mini-GWAC telescopes,they were adept to efficiently cover the sky localization areas of GW event candidates.In this paper,we present the mini-GWAC pipeline we have set up to respond to GW alerts and we report our optical follow-up observations of eight GW alerts detected during the O2 run.Our observations provided the largest coverage of the GW localization areas with a short latency made by any optical facility.We found tens of optical transient candidates in our images,but none of those could be securely associated with any confirmed black hole-black hole merger event.Based on this first experience and the near future technical improvements of our network system,we will be more competitive in detecting the optical counterparts from some GW events that will be identified during the upcoming O3 run,especially those emerging from binary neutron star mergers.展开更多
In this article we show that the description of the gravitational field as a cloud of g-information implies the phenomenon of “gravitomagnetic” or “gravitational waves”1 and that accelerated mass particles and rad...In this article we show that the description of the gravitational field as a cloud of g-information implies the phenomenon of “gravitomagnetic” or “gravitational waves”1 and that accelerated mass particles and radioactive decay are sources of such waves. It is also shown that a gravitomagnetic wave propagating in a certain direction can be understood as the macroscopic manifestation of a spatial sequence of informatons whose characteristic angle is fluctuating along that—with the speed of light—speeding “train”. Finally, it is shown that gravitomagnetic waves transport energy in the form of packages carried by informatons. These entities are called “gravitons”.展开更多
A three-arm Michelson-Fabry-Perot detector for gravitational waves is designed. It consists of three Michelson Fabry-Perot interferometers, one for each pair of arms. The new detector can be used to confirm whether th...A three-arm Michelson-Fabry-Perot detector for gravitational waves is designed. It consists of three Michelson Fabry-Perot interferometers, one for each pair of arms. The new detector can be used to confirm whether the gravitational waves are in general relativity polarization states and to set the strong constraints on non-GR gravitational wave polarization states. By the new detectors, the angular resolution of sources can be improved significantly. With the new detector, it is easier to search for and confirm a gravitational wave signal in the observation data.展开更多
Recently, a configuration using atomic interferometers (AIs) had been sug- gested for the detection of gravitational waves. A new AI with some additional laser pulses for implementing large momentum transfer was als...Recently, a configuration using atomic interferometers (AIs) had been sug- gested for the detection of gravitational waves. A new AI with some additional laser pulses for implementing large momentum transfer was also put forward, in order to reduce the effect of shot noise and laser frequency noise. We use a sensitivity function to analyze all possible configurations of the new AI and to distinguish how many mo- menta are transferred in a specific configuration. By analyzing the new configuration, we further explore a detection scheme for gravitational waves, in particular, that ame- liorates laser frequency noise. We find that the amelioration occurs in such a scheme, but novelly, in some cases, the frequency noise can be canceled completely by using a proper data processing method.展开更多
Relic gravitational waves (RGWs), a background originating during inflation, would leave imprints on pulsar timing residuals. This makes RGWs an important source for detection of RGWs using the method of pulsar timi...Relic gravitational waves (RGWs), a background originating during inflation, would leave imprints on pulsar timing residuals. This makes RGWs an important source for detection of RGWs using the method of pulsar timing. In this paper, we discuss the effects of RGWs on single pulsar timing, and quantitatively analyze the timing residuals caused by RGWs with different model parameters. In principle, if the RGWs are strong enough today, they can be detected by timing a single millisecond pulsar with high precision after the intrinsic red noises in pulsar timing residuals are understood, even though simultaneously observing multiple millisecond pulsars is a more powerful technique for extracting gravitational wave signals. We correct the normalization of RGWs using observations of the cosmic microwave background (CMB), which leads to the amplitudes of RGWs being reduced by two orders of magnitude or so compared to our previous works. We obtained new constraints on RGWs using recent observations from the Parkes Pulsar Timing Array, employing the tensor-to-scalar ratio r = 0.2 due to the tensor-type polarization observations of CMB by BICEP2 as a reference value, even though its reliability has been brought into question. Moreover, the constraints on RGWs from CMB and Big Bang nucleosynthesis will also be discussed for comparison.展开更多
A stochastic background of gravitational waves with astrophysical origins may have'resulted from the superposition of a large number of unresolved sources since the beginning of stellar activity. Its detection would ...A stochastic background of gravitational waves with astrophysical origins may have'resulted from the superposition of a large number of unresolved sources since the beginning of stellar activity. Its detection would put very strong constraints on the physical properties of compact objects, the initial mass function and star for- marion history. On the other hand, it could be a 'noise' that would mask the stochastic background of its cosmological origin. We review the main astrophysical processes which are able to produce a stochastic background and discuss how they may differ from the primordial contribution in terms of statistical properties. Current detection methods are also presented.展开更多
The polarization vector (PV) of an electromagnetic wave (EW) will experience a rotation in a region of spacetime perturbed by gravitational waves (GWs). Based on this consideration, Cruise's group has built an ...The polarization vector (PV) of an electromagnetic wave (EW) will experience a rotation in a region of spacetime perturbed by gravitational waves (GWs). Based on this consideration, Cruise's group has built an annular waveguide to detect GWs. We give detailed calculations of the rotations of polarization vector of an EW caused by incident GWs from various directions and in various polarization states, and then analyze the accumulative effects on the polarization vector when the EW passes n cycles along the annular waveguide. We reexamine the feasibility and limitation of this method to detect GWs of high frequency around 100 MHz, in particular the relic gravitational waves (RGWs). By comparing the spectrum of RGWs in the accelerating universe with the detector sensitivity of the current waveguide, it is found that the amplitude of the RGWs is too low to be detected by the waveguide detectors currently operating. Possible ways of improvements on detection are suggested.展开更多
Gravitational wave(GW) signals from compact binary coalescences can be used as standard sirens to constrain cosmological parameters if their redshift can be measured independently by electromagnetic signals.However,me...Gravitational wave(GW) signals from compact binary coalescences can be used as standard sirens to constrain cosmological parameters if their redshift can be measured independently by electromagnetic signals.However,mergers of stellar binary black holes(BBHs) may not have electromagnetic counterparts and thus have no direct redshift measurements.These dark sirens may be still used to statistically constrain cosmological parameters by combining their GW measured luminosity distances and localization with deep redshift surveys of galaxies around it.We investigate this dark siren method to constrain cosmological parameters in detail by using mock BBH and galaxy samples.We find that the Hubble constant can be constrained well with an accuracy■ 1% with a few tens or more of BBH mergers at redshift up to 1 if GW observations can provide accurate estimates of their luminosity distance(with relative error of■ 0.01) and localization(■ 0.1 deg^(2)),though the constraint may be significantly biased if the luminosity distance and localization errors are larger.We also introduce a simple method to correct this bias and find it is valid when the luminosity distance and localization errors are modestly large.We further generate mock BBH samples,according to current constraints on BBH merger rate and the distributions of BBH properties,and find that the Deci-hertz Observatory(DO) in a half year observation period may detect about one hundred BBHs with signal-to-noise ratio■■30,relative luminosity distance error■ 0.02 and localization error ■0.01 deg^(2).By applying the dark standard siren method,we find that the Hubble constant can be constrained to the~0.1%-1% level using these DO BBHs,an accuracy comparable to the constraints obtained by using electromagnetic observations in the near future,thus it may provide insight into the Hubble tension.We also demonstrate that the constraint on the Hubble constant applying this dark siren method is robust and does not depend on the choice of the prior for the properties of BBH host galaxies.展开更多
Up to the present time gravitational-wave detectors, such as LIGO and Virgo, have been sensitive to frequencies on the order of a few thousand to a small fraction of an Hz. They have been most effective in the study o...Up to the present time gravitational-wave detectors, such as LIGO and Virgo, have been sensitive to frequencies on the order of a few thousand to a small fraction of an Hz. They have been most effective in the study of black-hole mergers. We suggest that high-frequency relic gravitational wave (HFRGW) detectors be developed, especially the Li-Baker HFRGW detector, in the gigahertz and higher frequency range. We believe collecting cosmological, primordial observational data especially generated during the first few seconds after the beginning of our Universe is extremely important. One motivation for this paper is, therefore, that we are confident that observation of relic gravitational waves will provide vital information about the birth of our Universe and its early dynamical evolution. Other astrophysical applications of HFRGW detectors involve the entropy growth of the early Universe, an ability to study alternatives to inflation and to provide clues about the symmetries underlying new physics at the highest energies. A working hypothesis or theory, based upon the rollout of our Universe from infinitesimal Planck Length and Planck Time is presented. This theory involves the rapid motion of time and matter during that early time having frequencies on the order of trillions of cycles per second or more. Several alternative HFRGW detectors are described and the proposed Li-Baker HFRGW detector, which is theoretically sensitive to GW amplitudes, A, as small as 10-32, is discussed in detail. Such sensitivity may provide a means for verifying or falsifying the rollout of our Universe working hypothesis. Essentially a combination of theory and experimentation is presented. It is recommended that plans and detailed specifications for the Li-Baker HFRGW detector be prepared in order to expedite its fabrication.展开更多
In space-based gravitational wave detection, the estimation of far-field wavefront error of the distorted beam is the precondition for the noise reduction. Zernike polynomials are used to describe the wavefront error ...In space-based gravitational wave detection, the estimation of far-field wavefront error of the distorted beam is the precondition for the noise reduction. Zernike polynomials are used to describe the wavefront error of the transmitted distorted beam. The propagation of a laser beam between two telescope apertures is calculated numerically. Far-field wavefront error is estimated with the absolute height of the peak-to-valley phase deviation between the distorted Gaussian beam and a reference distortion-free Gaussian beam. The results show that the pointing jitter is strongly related to the wavefront error. Furthermore, when the jitter decreases 10 times from 100 nrad to 10 nrad, the wavefront error reduces for more than an order of magnitude. In the analysis of multi-parameter minimization, the minimum of wavefront error tends to Z[5,3] Zernike in some parameter ranges. Some Zernikes have a strong correlation with the wavefront error of the received beam. When the aperture diameter increases at Z[5,3] Zernike, the wavefront error is not monotonic and has oscillation.Nevertheless, the wavefront error almost remains constant with the arm length increasing from 10-1Mkm to 10~3Mkm.When the arm length decreases for three orders of magnitude from 10-1Mkm to 10-4Mkm, the wavefront error has only an order of magnitude increasing. In the range of 10-4Mkm to 10~3Mkm, the lowest limit of the wavefront error is from 0.5 fm to 0.015 fm at Z[5,3] Zernike and 10 nrad jitter.展开更多
It is proved strictly based on general relativity that two important factors are neglected in LIGO experiments by using Michelson interferometers so that fatal mistakes were caused. One is that the gravitational wave ...It is proved strictly based on general relativity that two important factors are neglected in LIGO experiments by using Michelson interferometers so that fatal mistakes were caused. One is that the gravitational wave changes the wavelength of light. Another is that light’s speed is not a constant when gravitational waves exist. According to general relativity, gravitational wave affects spatial distance, so it also affects the wavelength of light synchronously. By considering this fact, the phase differences of lasers were invariable when gravitational waves passed through Michelson interferometers. In addition, when gravitational waves exist, the spatial part of metric changes but the time part of metric is unchanged. In this way, light’s speed is not a constant. When the calculation method of time difference is used in LIGO experiments, the phase shift of interference fringes is still zero. So the design principle of LIGO experiment is wrong. It was impossible for LIGO to detect gravitational wave by using Michelson interferometers. Because light’s speed is not a constant, the signals of LIGO experiments become mismatching. It means that these signals are noises actually, caused by occasional reasons, no gravitational waves are detected really. In fact, in the history of physics, Michelson and Morley tried to find the absolute motion of the earth by using Michelson interferometers but failed at last. The basic principle of LIGO experiment is the same as that of Michelson-Morley experiment in which the phases of lights were invariable. Only zero result can be obtained, so LIGO experiments are destined failed to find gravitational waves.展开更多
On September 14, 2015 09:50:45 UTC, the two laser interferometers of the LIGO program simultaneously observed a first gravitational wave signal called GW150914. With the commissioning of the VIRGO interferometer in 20...On September 14, 2015 09:50:45 UTC, the two laser interferometers of the LIGO program simultaneously observed a first gravitational wave signal called GW150914. With the commissioning of the VIRGO interferometer in 2017, two other detections, GW170814 and GW170817, were observed and their positions given accurately by LIGO and VIRGO. In this article, I argue that the photons circulating in the cavities of the three interferometers of LIGO and VIRGO were sensitive to the field of attraction of the planets of our Solar System and more particularly to that of the Sun, and would not be due to a coalescence of black hole or neutron stars. The shape of the signals obtained by my interaction model (called GEAR) between the photons in the interferometer cavity and the gravitational field of the Sun is very similar to that of a compact binary coalescence, identical to those obtained by general relativity. Solving the equations of GEAR also gives the exact positions and pseudo-date of the coalescences of all the LIGO and VIRGO detections detected so far, and probably those that will come at the end of 2018 and beyond.展开更多
基金supported by the National Key Research and Development Program of China(2022YFC2203700).
文摘The gravitational wave spacecraft is a complex multi-input multi-output dynamic system.The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precision control.Establishing one spacecraftwith two laser links,compared to one spacecraft with a single laser link,requires an upgraded decoupling algorithmfor the link establishment.The decoupling algorithmwe designed reassigns the degrees of freedomand forces in the control loop to ensure sufficient degrees of freedomfor optical axis control.In addressing the distinct dynamic characteristics of different degrees of freedom,a transfer function compensation method is used in the decoupling process to further minimize motion coupling.The open-loop frequency response of the systemis obtained through simulation.The upgraded decoupling algorithms effectively reduce the open-loop frequency response by 30 dB.The transfer function compensation method efficiently suppresses the coupling of low-frequency noise.
基金supported by the National Natural Science Foundation of China (Grant Nos.12021003,11920101003,and 11633001)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB23000000)。
文摘Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merger dynamics that bridge these two sets of observables remain enigmatic.This includes if,and when,the post-merger remnant star collapses to a black hole,and what are the necessary conditions to power a short gamma-ray burst,and other observed electromagnetic counterparts.Our focus is on the detection of gravitational wave(GW)emissions from hyper-massive neutron stars(NSs)formed through binary neutron star(BNS)mergers.Utilizing several kilohertz GW detectors,we simulate BNS mergers within the detection limits of LIGO-Virgo-KARGA O4.Our objective is to ascertain the fraction of simulated sources that may emit detectable post-merger GW signals.For kilohertz detectors equipped with a new cavity design,we estimate that approximately 1.1%-32%of sources would emit a detectable post-merger GW signal.This fraction is contingent on the mass converted into gravitational wave energy,ranging from 0.01M_(sun)to 0.1M_(sun).Furthermore,by evaluating other well-regarded proposed kilohertz GW detectors,we anticipate that the fraction can increase to as much as 2.1%-61%under optimal performance conditions.
基金This work was supported by the National Key Research and Development Program Topics(2020YFC2200902)the National Natural Science Foundation of China(11872110).
文摘To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm.
文摘The recently observed gravitational wave background is explained in terms of the quantum modification of the general relativity (Qmoger). Some UFO, FRB and supernova flares also can be explained in terms of Qmoger.
基金the National Naturale Science Foundation of China under contract No. 40476010 the Research Fund for the Doctoral Program of Higher Education of China under contract No. 20030423011
文摘The pitfalls of applying the commonly used definition of available gravitational potential energy (AGPE) to the world oceans are re-examined. It is proposed that such definition should apply to the meso-scale problems in the oceans, not the global scale. Based on WOA98 climatological data, the meso-scale AGPE in the world oceans is estimated. Unlike previous results by Oort et al. , the meso-scale AGPE is large wherever there is a strong horizontal density gradient. The distribution of meso-scale AGPE reveals the close connection between the baroclinic instability and the release of gravitational potential energy stored within the scale of Rossby deformation radius.
基金supported by the National SKA Program of China(2020SKA0120100)the National Natural Science Foundation of China(Nos.12041303 and 12250410246)+1 种基金the CAS-MPG LEGACY projectfunding from the Max-Planck Partner Group。
文摘Observing and timing a group of millisecond pulsars with high rotational stability enables the direct detection of gravitational waves(GWs).The GW signals can be identified from the spatial correlations encoded in the times-of-arrival of widely spaced pulsar-pairs.The Chinese Pulsar Timing Array(CPTA)is a collaboration aiming at the direct GW detection with observations carried out using Chinese radio telescopes.This short article serves as a“table of contents”for a forthcoming series of papers related to the CPTA Data Release 1(CPTA DR1)which uses observations from the Five-hundred-meter Aperture Spherical radio Telescope.Here,after summarizing the time span and accuracy of CPTA DR1,we report the key results of our statistical inference finding a correlated signal with amplitude logA_(c)=-14.4_(-2.8)^(+1.0)for spectral index in the range ofα∈[-1.8,1.5]assuming a GW background(GWB)induced quadrupolar correlation.The search for the Hellings–Downs(HD)correlation curve is also presented,where some evidence for the HD correlation has been found that a 4.6σstatistical significance is achieved using the discrete frequency method around the frequency of 14 n Hz.We expect that the future International Pulsar Timing Array data analysis and the next CPTA data release will be more sensitive to the n Hz GWB,which could verify the current results.
文摘Under most models of the early universe evolution, high-frequency gravitational waves (HFGWs) were produced. They are referred to as “relic” high-frequency gravitational waves or HFRGWs and their detection and measurement could provide important information on the origin and development of our Universe – information that could not otherwise be obtained. So far three instruments have been built to detect and measure HFRGWs, but so far none of them has achieved the required sensitivity. This paper concerns another detector, originally proposed by Baker in 2000 and patented, which is based upon a recently discovered physical effect (the Li effect);this detector has accordingly been named the “Li-Baker detector.” The detector has been a joint development effort by the P. R. China and the United States HFGW research teams. A rigorous examination of the detector’s performance is important in the ongoing debate over the value of attempting to construct a Li-Baker detector and, in particular, an accurate prediction of its sensitivity in the presence of significant noise will decide whether the Li-Baker detector will be capable of detecting and measuring HFRGWs. The potential for useful HFRGW measurement is theoretically confirmed.
基金supported by FAPESP (under grant No.1998/13468-9 and2006/56041-3)CNPq (under grant No. 306467/03-8), CAPES and MCT/INPE
文摘Resonant-mass gravitational wave detectors are reviewed from the concept of gravitational waves and its mathematical derivation, using Einstein's general relativity, to the present status of bars and spherical detectors, and their prospects for the future, which include dual detectors and spheres with non-resonant transducers. The review not only covers technical aspects of detectors and sciences that will be done, but also analyzes the subject in a historical perspective, covering the various detection efforts over four decades, starting from Weber's pioneering work.
基金supported by the National Natural Science Foundation of China(Grant Nos.11533003,11673006,U1331202,U1931133 and U1938201)the Guangxi Science Foundation(2016GXNSFFA380006,AD17129006and 2018GXNSFGA281007)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB23040000)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(XDA15052600)financial support from the Chinese Academy of Sciences PIFI post-doctoral fellowship program(program C)financial support of the Univ Earth S Labex program at Sorbonne Paris Cité(ANR-10-LABX-0023 and ANR-11-IDEX-0005-02)
文摘The second(O2)observational campaign of gravitational waves(GWs)organized by the LIGO/Virgo Collaborations has led to several breakthroughs such as the detection of GW signals from merger systems involving black holes or neutrons stars.During O2,14 GW alerts were sent to the astronomical community with sky regions mostly covering over hundreds of square degrees.Among them,six were finally confirmed as real astrophysical events.Since 2013,a new set of ground-based robotic telescopes called Ground-based Wide Angle Camera system(GWAC)project and its pathfinder mini-GWAC has been developed to contribute to the various challenges of multi-messenger and time domain astronomy.The GWAC system is built up in the framework of the ground-segment system of the SVOM mission that will be devoted to the study of the multi-wavelength transient sky in the next decade.During O2,only the mini-GWAC telescope network was fully operational.Due to the wide field of view and fast automatic follow-up capabilities of the mini-GWAC telescopes,they were adept to efficiently cover the sky localization areas of GW event candidates.In this paper,we present the mini-GWAC pipeline we have set up to respond to GW alerts and we report our optical follow-up observations of eight GW alerts detected during the O2 run.Our observations provided the largest coverage of the GW localization areas with a short latency made by any optical facility.We found tens of optical transient candidates in our images,but none of those could be securely associated with any confirmed black hole-black hole merger event.Based on this first experience and the near future technical improvements of our network system,we will be more competitive in detecting the optical counterparts from some GW events that will be identified during the upcoming O3 run,especially those emerging from binary neutron star mergers.
文摘In this article we show that the description of the gravitational field as a cloud of g-information implies the phenomenon of “gravitomagnetic” or “gravitational waves”1 and that accelerated mass particles and radioactive decay are sources of such waves. It is also shown that a gravitomagnetic wave propagating in a certain direction can be understood as the macroscopic manifestation of a spatial sequence of informatons whose characteristic angle is fluctuating along that—with the speed of light—speeding “train”. Finally, it is shown that gravitomagnetic waves transport energy in the form of packages carried by informatons. These entities are called “gravitons”.
基金Supported by the National Natural Science Foundation of China under Grant No 11275207
文摘A three-arm Michelson-Fabry-Perot detector for gravitational waves is designed. It consists of three Michelson Fabry-Perot interferometers, one for each pair of arms. The new detector can be used to confirm whether the gravitational waves are in general relativity polarization states and to set the strong constraints on non-GR gravitational wave polarization states. By the new detectors, the angular resolution of sources can be improved significantly. With the new detector, it is easier to search for and confirm a gravitational wave signal in the observation data.
基金Supported by the National Natural Science Foundation of China
文摘Recently, a configuration using atomic interferometers (AIs) had been sug- gested for the detection of gravitational waves. A new AI with some additional laser pulses for implementing large momentum transfer was also put forward, in order to reduce the effect of shot noise and laser frequency noise. We use a sensitivity function to analyze all possible configurations of the new AI and to distinguish how many mo- menta are transferred in a specific configuration. By analyzing the new configuration, we further explore a detection scheme for gravitational waves, in particular, that ame- liorates laser frequency noise. We find that the amelioration occurs in such a scheme, but novelly, in some cases, the frequency noise can be canceled completely by using a proper data processing method.
基金supported by the National Natural Science Foundation of China(Grant Nos.11103024,11373028 and 11403030)the Science and Technology Research Development Program of Shaanxi Province+1 种基金the CAS“Light of West China”Programthe Open Project of Key Laboratory for Research in Galaxies and Cosmology,Chinese Academy of Sciences(Grant No.14010205)
文摘Relic gravitational waves (RGWs), a background originating during inflation, would leave imprints on pulsar timing residuals. This makes RGWs an important source for detection of RGWs using the method of pulsar timing. In this paper, we discuss the effects of RGWs on single pulsar timing, and quantitatively analyze the timing residuals caused by RGWs with different model parameters. In principle, if the RGWs are strong enough today, they can be detected by timing a single millisecond pulsar with high precision after the intrinsic red noises in pulsar timing residuals are understood, even though simultaneously observing multiple millisecond pulsars is a more powerful technique for extracting gravitational wave signals. We correct the normalization of RGWs using observations of the cosmic microwave background (CMB), which leads to the amplitudes of RGWs being reduced by two orders of magnitude or so compared to our previous works. We obtained new constraints on RGWs using recent observations from the Parkes Pulsar Timing Array, employing the tensor-to-scalar ratio r = 0.2 due to the tensor-type polarization observations of CMB by BICEP2 as a reference value, even though its reliability has been brought into question. Moreover, the constraints on RGWs from CMB and Big Bang nucleosynthesis will also be discussed for comparison.
文摘A stochastic background of gravitational waves with astrophysical origins may have'resulted from the superposition of a large number of unresolved sources since the beginning of stellar activity. Its detection would put very strong constraints on the physical properties of compact objects, the initial mass function and star for- marion history. On the other hand, it could be a 'noise' that would mask the stochastic background of its cosmological origin. We review the main astrophysical processes which are able to produce a stochastic background and discuss how they may differ from the primordial contribution in terms of statistical properties. Current detection methods are also presented.
文摘The polarization vector (PV) of an electromagnetic wave (EW) will experience a rotation in a region of spacetime perturbed by gravitational waves (GWs). Based on this consideration, Cruise's group has built an annular waveguide to detect GWs. We give detailed calculations of the rotations of polarization vector of an EW caused by incident GWs from various directions and in various polarization states, and then analyze the accumulative effects on the polarization vector when the EW passes n cycles along the annular waveguide. We reexamine the feasibility and limitation of this method to detect GWs of high frequency around 100 MHz, in particular the relic gravitational waves (RGWs). By comparing the spectrum of RGWs in the accelerating universe with the detector sensitivity of the current waveguide, it is found that the amplitude of the RGWs is too low to be detected by the waveguide detectors currently operating. Possible ways of improvements on detection are suggested.
基金partly supported by the National Key Program for Science and Technology Research and Development(Grant Nos. 2020YFC2201400, 2020SKA0120102 and 2016YFA0400704)the National Natural Science Foundation of China (Grant No. 11690024)the Strategic Priority Program of the Chinese Academy of Sciences (Grant XDB23040100)。
文摘Gravitational wave(GW) signals from compact binary coalescences can be used as standard sirens to constrain cosmological parameters if their redshift can be measured independently by electromagnetic signals.However,mergers of stellar binary black holes(BBHs) may not have electromagnetic counterparts and thus have no direct redshift measurements.These dark sirens may be still used to statistically constrain cosmological parameters by combining their GW measured luminosity distances and localization with deep redshift surveys of galaxies around it.We investigate this dark siren method to constrain cosmological parameters in detail by using mock BBH and galaxy samples.We find that the Hubble constant can be constrained well with an accuracy■ 1% with a few tens or more of BBH mergers at redshift up to 1 if GW observations can provide accurate estimates of their luminosity distance(with relative error of■ 0.01) and localization(■ 0.1 deg^(2)),though the constraint may be significantly biased if the luminosity distance and localization errors are larger.We also introduce a simple method to correct this bias and find it is valid when the luminosity distance and localization errors are modestly large.We further generate mock BBH samples,according to current constraints on BBH merger rate and the distributions of BBH properties,and find that the Deci-hertz Observatory(DO) in a half year observation period may detect about one hundred BBHs with signal-to-noise ratio■■30,relative luminosity distance error■ 0.02 and localization error ■0.01 deg^(2).By applying the dark standard siren method,we find that the Hubble constant can be constrained to the~0.1%-1% level using these DO BBHs,an accuracy comparable to the constraints obtained by using electromagnetic observations in the near future,thus it may provide insight into the Hubble tension.We also demonstrate that the constraint on the Hubble constant applying this dark siren method is robust and does not depend on the choice of the prior for the properties of BBH host galaxies.
文摘Up to the present time gravitational-wave detectors, such as LIGO and Virgo, have been sensitive to frequencies on the order of a few thousand to a small fraction of an Hz. They have been most effective in the study of black-hole mergers. We suggest that high-frequency relic gravitational wave (HFRGW) detectors be developed, especially the Li-Baker HFRGW detector, in the gigahertz and higher frequency range. We believe collecting cosmological, primordial observational data especially generated during the first few seconds after the beginning of our Universe is extremely important. One motivation for this paper is, therefore, that we are confident that observation of relic gravitational waves will provide vital information about the birth of our Universe and its early dynamical evolution. Other astrophysical applications of HFRGW detectors involve the entropy growth of the early Universe, an ability to study alternatives to inflation and to provide clues about the symmetries underlying new physics at the highest energies. A working hypothesis or theory, based upon the rollout of our Universe from infinitesimal Planck Length and Planck Time is presented. This theory involves the rapid motion of time and matter during that early time having frequencies on the order of trillions of cycles per second or more. Several alternative HFRGW detectors are described and the proposed Li-Baker HFRGW detector, which is theoretically sensitive to GW amplitudes, A, as small as 10-32, is discussed in detail. Such sensitivity may provide a means for verifying or falsifying the rollout of our Universe working hypothesis. Essentially a combination of theory and experimentation is presented. It is recommended that plans and detailed specifications for the Li-Baker HFRGW detector be prepared in order to expedite its fabrication.
基金supported in part by the National Key Research and Development Program of China (Grant No. 2020YFC2201501)the National Natural Science Foundation of China (Grant No. 12147103, special fund to the center for quanta-to-cosmos theoretical physics) (Grant No. 11821505)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB23030100)the Chinese Academy of Sciences (CAS)。
文摘In space-based gravitational wave detection, the estimation of far-field wavefront error of the distorted beam is the precondition for the noise reduction. Zernike polynomials are used to describe the wavefront error of the transmitted distorted beam. The propagation of a laser beam between two telescope apertures is calculated numerically. Far-field wavefront error is estimated with the absolute height of the peak-to-valley phase deviation between the distorted Gaussian beam and a reference distortion-free Gaussian beam. The results show that the pointing jitter is strongly related to the wavefront error. Furthermore, when the jitter decreases 10 times from 100 nrad to 10 nrad, the wavefront error reduces for more than an order of magnitude. In the analysis of multi-parameter minimization, the minimum of wavefront error tends to Z[5,3] Zernike in some parameter ranges. Some Zernikes have a strong correlation with the wavefront error of the received beam. When the aperture diameter increases at Z[5,3] Zernike, the wavefront error is not monotonic and has oscillation.Nevertheless, the wavefront error almost remains constant with the arm length increasing from 10-1Mkm to 10~3Mkm.When the arm length decreases for three orders of magnitude from 10-1Mkm to 10-4Mkm, the wavefront error has only an order of magnitude increasing. In the range of 10-4Mkm to 10~3Mkm, the lowest limit of the wavefront error is from 0.5 fm to 0.015 fm at Z[5,3] Zernike and 10 nrad jitter.
文摘It is proved strictly based on general relativity that two important factors are neglected in LIGO experiments by using Michelson interferometers so that fatal mistakes were caused. One is that the gravitational wave changes the wavelength of light. Another is that light’s speed is not a constant when gravitational waves exist. According to general relativity, gravitational wave affects spatial distance, so it also affects the wavelength of light synchronously. By considering this fact, the phase differences of lasers were invariable when gravitational waves passed through Michelson interferometers. In addition, when gravitational waves exist, the spatial part of metric changes but the time part of metric is unchanged. In this way, light’s speed is not a constant. When the calculation method of time difference is used in LIGO experiments, the phase shift of interference fringes is still zero. So the design principle of LIGO experiment is wrong. It was impossible for LIGO to detect gravitational wave by using Michelson interferometers. Because light’s speed is not a constant, the signals of LIGO experiments become mismatching. It means that these signals are noises actually, caused by occasional reasons, no gravitational waves are detected really. In fact, in the history of physics, Michelson and Morley tried to find the absolute motion of the earth by using Michelson interferometers but failed at last. The basic principle of LIGO experiment is the same as that of Michelson-Morley experiment in which the phases of lights were invariable. Only zero result can be obtained, so LIGO experiments are destined failed to find gravitational waves.
文摘On September 14, 2015 09:50:45 UTC, the two laser interferometers of the LIGO program simultaneously observed a first gravitational wave signal called GW150914. With the commissioning of the VIRGO interferometer in 2017, two other detections, GW170814 and GW170817, were observed and their positions given accurately by LIGO and VIRGO. In this article, I argue that the photons circulating in the cavities of the three interferometers of LIGO and VIRGO were sensitive to the field of attraction of the planets of our Solar System and more particularly to that of the Sun, and would not be due to a coalescence of black hole or neutron stars. The shape of the signals obtained by my interaction model (called GEAR) between the photons in the interferometer cavity and the gravitational field of the Sun is very similar to that of a compact binary coalescence, identical to those obtained by general relativity. Solving the equations of GEAR also gives the exact positions and pseudo-date of the coalescences of all the LIGO and VIRGO detections detected so far, and probably those that will come at the end of 2018 and beyond.