The rapid elongation of rice(Oryza sativa)coleoptile is pivotal for the plant plumule to evade hypoxia stress induced by submergence,a condition often arising from overirrigation,ponding,rainstorms,or flooding.While b...The rapid elongation of rice(Oryza sativa)coleoptile is pivotal for the plant plumule to evade hypoxia stress induced by submergence,a condition often arising from overirrigation,ponding,rainstorms,or flooding.While brassinosteroids(BRs)are recognized for their diverse roles in plant growth and development,their influence on coleoptile elongation under hypoxic conditions remains largely unexplored.In this study,we demonstrate the significant requirement of BRs for coleoptile elongation in deep water.During coleoptile development,Glycogen Synthase Kinase3-Like Kinase2(GSK2),the central inhibitor of BR signaling in rice,undergoes substantial suppression in deep water but induction in air.In contrast,the dephosphorylated form of BRASSINAZOLE RESISTANT1(OsBZR1),representing the active form of the key BR signaling transcription factor,is induced in water but suppressed in air.Remarkably,the knockout of GSK3-like kinase genes significantly enhances coleoptile elongation in deep water,strongly indicating a vital contribution of BR response to hypoxia-stimulated coleoptile elongation.Transcriptome analysis uncovers both BR-associated and BR-independent hypoxia responses,implicating substance metabolism,redox reactions,abiotic stress responses,and crosstalk with other hormones in the regulation of BR-induced hypoxia responses.In summary,our findings suggest that rice plumules rapidly elongate coleoptiles through the activation of BR response in deep water,enabling them to escape from submergence-induced hypoxia stress.展开更多
Previous studies have examined the effects of red light (R) on phototropism of maize ( Zea mays L. cv. Royaldent Hit 85) coleoptiles. The R effect on time-dependent phototropism (TDP) was further studied by characteri...Previous studies have examined the effects of red light (R) on phototropism of maize ( Zea mays L. cv. Royaldent Hit 85) coleoptiles. The R effect on time-dependent phototropism (TDP) was further studied by characterizing its fluence-response relationship. The results showed the R effect was a low-fluence-response, unlike those on pulse-induced phototropisms that show a very-low-fluence-response mode. A subsequent pulse of far-red light (FR) could reverse the R effect. TDP responsiveness, however, recovered as the following FR was extended, The FR-dependent increase in TDP responsiveness was obtained even coleoptiles were pretreated only with FR. It suggested that TDP responsiveness could also be established in response to a FR signal. The fluence-response relationship for the effect of FR was then investigated. The effect of FR depended on the time of irradiation and required high photon fluences. Because reciprocity was invalid at the higher fluence range, the effect of FR would be a high-irradiance-response mode. Relation between phytochrome action modes and possible multiple pathways for phototropic signal transduction was analyzed based on the experiment results.展开更多
[Objective] The aim was to explore the ways of callus induction and the effect that different culture condition exerted on the callus induction from coleoptile explants of Amorphophallus. [Method] The test used konjac...[Objective] The aim was to explore the ways of callus induction and the effect that different culture condition exerted on the callus induction from coleoptile explants of Amorphophallus. [Method] The test used konjac coleoptile as materials and designed four hormones, including 6-BA, NAA, KT and 2, 4-D, grouping 8 treat- ments to conduct statistics on callus induction in different test conditions. [Result] The result showed that multi-location generation and polymorphism was the impor- tant feature of callus induction from coleoptile explants of Amorphophallus; culture condition had significant influence on callus induction from coleoptile explants (P〈 0.01). [Conclusion] It reached the best effect of callus induction when the culture condition was MS + 1.0 mg/L 6-BA + 2.0 mg/L NAA or MS + 1.0 mg/LKT + 2.0 mg/L 2, 4-D.展开更多
Understanding the effects of wheat dwarfing genes on the coleoptile length and plant height is crucial for the proper utilization of dwarfing genes in the improvement of wheat yield. Molecular marker analysis combined...Understanding the effects of wheat dwarfing genes on the coleoptile length and plant height is crucial for the proper utilization of dwarfing genes in the improvement of wheat yield. Molecular marker analysis combined with pedigree information were used to classify wheat cultivars widely planted in major wheat growing regions in China into different categories based on the dwarfing genes they carried. The effects of the dwarfing genes with different sensitivity to gibberellins (GA3) on the coleoptile length and plant height were analyzed. Screening of 129 cultivars by molecular marker analysis revealed that 58 genotypes of wheat contained the dwarfing gene Rht-B1b, 24 genotypes of wheat contained Rht-D1b gene and 73 genotypes of wheat possessed Rht8 gene. In addition, among these 129 cultivars, 35 genotypes of wheat cultivars contained both Rht-B1b and Rht8 genes and 16 genotypes of wheat cultivars contained both Rht-D1b and Rht8 genes. Wheat cultivars with the dwarfing genes Rht-B1b or Rht-D1b were insensitive to GA3, while the cultivars with the dwarfing gene Rht8 were sensitive to GA3. Most of the wheat genotypes containing combination of Rht8 gene with either Rht-B1b or Rht-D1b gene were insensitive to GA3. The plant height was reduced by 24.6, 30.4, 28.2, and 32.2%, respectively, for the wheat cultivars containing Rht-B1b, Rht-D1b, Rht-B1b + Rht8, and Rht-D1b + Rht8 genes. The plant height was reduced by 14.3% for the wheat cultivar containing GA3-sensitive gene Rht8. The coleoptile length was shortened by 25.4, 31.3, 28.4 and 31.3%, respectively, in the wheat cultivars containing Rht-B1b, Rht-D1b, Rht-B1b +Rht8 and Rht-D1b + Rht8 genes, while the coleoptile length was shortened only by 6.2% for the wheat cultivar containing Rht8 gene. We conclude that GA3-insensitive dwarfing genes (Rht-B1b and Rht-D1b) are not suitable for the wheat improvement in dryland because these two genes have effect on reducing both plant height and coleoptile length. In contrast, GA3- sensitive dwarfing gene (Rht8) is a relatively ideal candidate for the wheat improvement since it significantly reduces the plant height of wheat, but has less effect on the coleoptile length.展开更多
By using a set of recombinant inbred line (RIL) population involving in 195 lines derived from a cross of Zhenshan 97B (lowland variety) and IRAT109 (upland variety), the correlation analysis between coleoptile ...By using a set of recombinant inbred line (RIL) population involving in 195 lines derived from a cross of Zhenshan 97B (lowland variety) and IRAT109 (upland variety), the correlation analysis between coleoptile length (CL) and drought resistance index (DRI) and their QTL identification were conducted. There existed a significantly positive relationship between CL and DRI with the correlation coefficient of 0.2206** under water stress conditions. Under normal and water stress conditions, a total of eleven and four QTLs for CL and DRI, respectively, were detected on chromosomes 1,2, 4, 5, 6, 7, 9, 11 and 12 by using a linkage map including 213 SSR markers, which explained 4.84% to 22.65% of phenotypic variance. Chromosomes 1 and 9 possessing the QTLs for DRI harbored simultaneously QTLs for CL, and qCL9 shared the same chromosome location with qDR19 (RM160-RM215). Comparing the QTLs related to drought resistance in other studies, QTLs for CL and DRI were located in the same or adjacent marker interval as those related to root traits, such as number, dry weight, depth, and length of root. Moreover, sixteen and three pairs of epistatic loci for CL and DRI were found, which accounted for 56.17% and 11.93% of the total variation in CL and DRI, respectively.展开更多
In plants,a large number of anthocyanin biosynthetic genes encoding enzymes and regulatory genes encoding transcription factors are required for anthocyanin synthesis.Coleoptile purple lines are two purple lines on bo...In plants,a large number of anthocyanin biosynthetic genes encoding enzymes and regulatory genes encoding transcription factors are required for anthocyanin synthesis.Coleoptile purple lines are two purple lines on both sides of coleoptiles after seed germination.However,the molecular mechanism of coleoptile purple line is not clear in rice so far.In this study,two major dominant genes,coleoptile purple line 1(OsCPL1,also known as OsC1)and coleoptile purple line 2(OsCPL2),were isolated via map-based cloning,and both of them were required for anthocyanin biosynthesis of coleoptile purple line in rice.The knockout and complementation experiments confirmed that OsC1 was required for purple color in most organs,such as coleoptile line,sheath,auricle,stigma and apiculus,whereas OsCPL2 was just required for coleoptile purple line.OsC1 was predominantly expressed in coleoptiles,flag leaves,and green panicles,and highly expressed in young leaves,whereas OsCPL2 was predominantly expressed in coleoptiles,and extremely lowly expressed in the other tested organs.Loss-of-function of either OsC1 or OsCPL2 resulted in significant reduction of transcript levels of multiple anthocyanin biosynthesis genes in coleoptiles.Coleoptile purple line was further used as a marker trait in hybrid rice.Purity identification in hybrid rice seeds via coleoptile purple line just needed a little water,soil and a small plate and could be completed within 5 d.Molecular marker and field identification analyses indicated that coleoptile purple line was reliable for the hybrid seed purity identification.Our findings disclosed that coleoptile purple line in rice was regulated by two major dominant genes,OsC1 and OsCPL2,and can be used as a simple,rapid,accurate and economic marker trait for seed purity identification in hybrid rice.展开更多
The high growth-stimulating effect of plant extract has urged the plant biotechnologists to use natural supplements in the culture media instead of synthetic phytohormones. We advocated the effect of sprouted sorghum ...The high growth-stimulating effect of plant extract has urged the plant biotechnologists to use natural supplements in the culture media instead of synthetic phytohormones. We advocated the effect of sprouted sorghum extract(SSE) on emergence, in vitro acclimatization, and genetic fidelity in coleoptile derived callus of indica rice variety ADT36. The use of SSE with Murashige Skoog medium efficiently acclimatized the root and shoot apical systems. A higher mat and seminal roots(3.4 g biomass) with an efficient shoot primordium elongation were observed with an increase in the concentration of SSE. Seeds treated with SSE medium showed higher germination and earlier coleoptile maturation about 48 h compared to untreated seeds, and there was a higher expression of e EF-1α with an increase in coleoptile length. B5 medium was effective on inducing embryogenic and nodular callus from 3-day-old coleoptile with 3.0 mg/L 2,4-dichlorophenoxyacetic acid and further proliferated effectively with 0.8 mg/L kinetin with a fresh weight of 180 mg. Highly significant regeneration was observed with combination of 2.5 mg/L 6-benzylamino purine and 3.0 mg/L α-naphthaleneacetic acid. The metabolic and genetic profiles of in vitro and directly cultivated plants were the same, examined through Fourier-transform infrared spectroscopy, random amplified polymorphic DNA(RAPD), inter-simple sequence repeat(ISSR) and R-ISSR(combination of RAPD and ISSR) markers, respectively, and thus confirming the significant efficacy of the SSE incorporated medium. Disarmed T-DNA was transformed to coleoptile derived callus through Agrobacterium tumefaciens LBA4404 and confirmed by GUS assay. The T-DNA integration was confirmed by DNA blot analysis using DNA from transient GUS-expressed explants. Thus, SSE can be used as a natural and organic supplement for organogenesis and efficient acclimatizations of shoot and root apical meristems in regenerated plants.展开更多
Rice direct seeding has the significant potential to save labor and water,conserve environmental resources,and reduce greenhouse gas emissions tremendously.Therefore,rice direct seeding is becoming the major cultivati...Rice direct seeding has the significant potential to save labor and water,conserve environmental resources,and reduce greenhouse gas emissions tremendously.Therefore,rice direct seeding is becoming the major cultivation technology applied to rice production in many countries.Identifying and utilizing genes controlling mesocotyl elongation is an effective approach to accelerate breeding procedures and meet the requirements for direct-seeded rice(DSR) production.This study used a permanent mapping population with 144 recombinant inbred lines(RILs) and 2 828 bin-markers to detect quantitative trait loci(QTLs) associated with mesocotyl length in 2019 and 2020.The mesocotyl lengths of the rice RILs and their parents,Lijiangxintuanheigu(LTH) and Shennong 265(SN265),were measured in a growth chamber at 30°C in a dark environment.A total of 16 QTLs for mesocotyl length were identified on chromosomes 1(2),2(4),3(2),4,5,6,7,9,11(2),and 12.Seven of these QTLs,including qML1a,qML1b,qML2d,qML3a,qML3b,qML5,and qML11b,were reproducibly detected in both years via the interval mapping method.The major QTL,qML3a,was reidentified in two years via the composite interval mapping method.A total of 10 to 413 annotated genes for each QTL were identified in their smallest genetic intervals of 37.69 kb to 2.78 Mb,respectively.Thirteen predicted genes within a relatively small genetic interval(88.18 kb) of the major mesocotyl elongation QTL,qML3a,were more thoroughly analyzed.Finally,the coding DNA sequence variations among SN265,LTH,and Nipponbare indicated that the LOC_Os03g50550 gene was the strongest candidate gene for the qML3a QTL controlling the mesocotyl elongation.This LOC_Os03g50550 gene encodes a mitogen-activated protein kinase.Relative gene expression analysis using qRT-RCR further revealed that the expression levels of the LOC_Os03g50550 gene in the mesocotyl of LTH were significantly lower than in the mesocotyl of SN265.In conclusion,these results further strengthen our knowledge about rice’s genetic mechanisms of mesocotyl elongation.This investigation’s discoveries will help to accelerate breeding programs for new DSR variety development.展开更多
Successful emergence from the soil is a prerequisite for survival of germinating seeds in their natural envi-ronment.In rice,coleoptile elongation facilitates seedling emergence and establishment,and ethylene plays an...Successful emergence from the soil is a prerequisite for survival of germinating seeds in their natural envi-ronment.In rice,coleoptile elongation facilitates seedling emergence and establishment,and ethylene plays an important role in this process.However,the underlying regulatory mechanism remains largely unclear.Here,we report that ethylene promotes cell elongation and inhibits cell expansion in rice coleoptiles,result-ing in longer and thinner coleoptiles that facilitate seedlings emergence from the soil.Transcriptome analysis showed that genes related to reactive oxygen species(ROS)generation are upregulated and genes involved in ROS scavenging are downregulated in the coleoptiles of ethylene-signaling mutants.Further investiga-tions showed that soil coverage promotes accumulation of ETHYLENE INSENSITIVE 3-LIKE 1(OsEIL1)and OsEIL2 in the upper region of the coleoptile,and both OsEIL1 and OsEIL2 can bind directly to the promoters of the GDP-mannose pyrophosphorylase(VTC1)gene OsVTC1-3 and the peroxidase(PRX)genes OsPRX37,OsPRX81,OsPRX82,and OsPRX88 to activate their expression.This leads to increased ascorbic acid content,greater peroxidase activity,and decreased ROS accumulation in the upper region of the coleoptile.Disruption of ROS accumulation promotes coleoptile growth and seedling emergence from soil.Thesendings deepen our understanding of the roles of ethylene and ROS in controlling coleoptile growth,and this information can be used by breeders to produce rice varieties suitable for direct seeding.展开更多
The lengths of mesocotyl in the seedlings of 84 lowland rice varieties and 12 upland rice varieties were measured following the treatments of daylight and darkness during germination. The elongation of mesocotyl in th...The lengths of mesocotyl in the seedlings of 84 lowland rice varieties and 12 upland rice varieties were measured following the treatments of daylight and darkness during germination. The elongation of mesocotyl in the varieties tested was inhibited under daylight condition, and the mesocotyl of all the varieties elongated variably under darkness condition. The elongated lengths of the mesocotyl in upland rice, ranging from 0.36 cm to 1,61 cm with an average of 0.81 cm, was obviously longer than those in lowland rice, ranging from 0.12 cm to 1.56 cm with an average of 0.42 cm. Among 14 rice varieties with over 1 cm of mesocotyl length, five belonged to upland rice, and nine to lowland rice. The possible utilization of the elongated-mesocotyl rice germplasm in varietal imorovement, direct-seeded plantina and seed ouritv testina were discussed.展开更多
The mesocotyl,a structure located between the basal part of the seminal root and the coleoptile node of seedlings,contributes to pushing the shoot tip through the soil surface,a function that is essential for the unif...The mesocotyl,a structure located between the basal part of the seminal root and the coleoptile node of seedlings,contributes to pushing the shoot tip through the soil surface,a function that is essential for the uniform emergence of direct-seeded rice.Its elongation is inhibited by light and induced in darkness.This investigation of an indica rice(P25)with vigorous mesocotyl elongation was aimed at identifying the"omics"basis of its lightinduced growth inhibition.A transcriptomic comparison between mesocotyl tissues that had developed in the dark and then been exposed to light identified many differentially expressed genes(DEGs)and differentially abundant micro RNAs(mi RNAs).Degradome sequencing analysis revealed 27 negative mi RNA-target pairs.A co-expression regulatory network was constructed based on the mi RNAs,their corresponding targets,and DEGs with a common Gene Ontology term.It suggested that auxin and light,probably antagonistically,affect mesocotyl elongation by regulating polyamine oxidase activity.展开更多
基金supported by STI 2030–Major Projects (2023ZD0407101)National Key Research and Development Program of China (2022YFD1201700)+1 种基金National Natural Science Foundation (U21A20208,32201704)Innovation Program of CAAS。
文摘The rapid elongation of rice(Oryza sativa)coleoptile is pivotal for the plant plumule to evade hypoxia stress induced by submergence,a condition often arising from overirrigation,ponding,rainstorms,or flooding.While brassinosteroids(BRs)are recognized for their diverse roles in plant growth and development,their influence on coleoptile elongation under hypoxic conditions remains largely unexplored.In this study,we demonstrate the significant requirement of BRs for coleoptile elongation in deep water.During coleoptile development,Glycogen Synthase Kinase3-Like Kinase2(GSK2),the central inhibitor of BR signaling in rice,undergoes substantial suppression in deep water but induction in air.In contrast,the dephosphorylated form of BRASSINAZOLE RESISTANT1(OsBZR1),representing the active form of the key BR signaling transcription factor,is induced in water but suppressed in air.Remarkably,the knockout of GSK3-like kinase genes significantly enhances coleoptile elongation in deep water,strongly indicating a vital contribution of BR response to hypoxia-stimulated coleoptile elongation.Transcriptome analysis uncovers both BR-associated and BR-independent hypoxia responses,implicating substance metabolism,redox reactions,abiotic stress responses,and crosstalk with other hormones in the regulation of BR-induced hypoxia responses.In summary,our findings suggest that rice plumules rapidly elongate coleoptiles through the activation of BR response in deep water,enabling them to escape from submergence-induced hypoxia stress.
文摘Previous studies have examined the effects of red light (R) on phototropism of maize ( Zea mays L. cv. Royaldent Hit 85) coleoptiles. The R effect on time-dependent phototropism (TDP) was further studied by characterizing its fluence-response relationship. The results showed the R effect was a low-fluence-response, unlike those on pulse-induced phototropisms that show a very-low-fluence-response mode. A subsequent pulse of far-red light (FR) could reverse the R effect. TDP responsiveness, however, recovered as the following FR was extended, The FR-dependent increase in TDP responsiveness was obtained even coleoptiles were pretreated only with FR. It suggested that TDP responsiveness could also be established in response to a FR signal. The fluence-response relationship for the effect of FR was then investigated. The effect of FR depended on the time of irradiation and required high photon fluences. Because reciprocity was invalid at the higher fluence range, the effect of FR would be a high-irradiance-response mode. Relation between phytochrome action modes and possible multiple pathways for phototropic signal transduction was analyzed based on the experiment results.
基金Supported by Shaanxi University of Technology Scientific Research Program(SLGKY14-12)Natural Science Program of Education Department of Shaanxi Provincial Government(2013JK0741)~~
文摘[Objective] The aim was to explore the ways of callus induction and the effect that different culture condition exerted on the callus induction from coleoptile explants of Amorphophallus. [Method] The test used konjac coleoptile as materials and designed four hormones, including 6-BA, NAA, KT and 2, 4-D, grouping 8 treat- ments to conduct statistics on callus induction in different test conditions. [Result] The result showed that multi-location generation and polymorphism was the impor- tant feature of callus induction from coleoptile explants of Amorphophallus; culture condition had significant influence on callus induction from coleoptile explants (P〈 0.01). [Conclusion] It reached the best effect of callus induction when the culture condition was MS + 1.0 mg/L 6-BA + 2.0 mg/L NAA or MS + 1.0 mg/LKT + 2.0 mg/L 2, 4-D.
基金supported by the National High-Tech R&D Program of China (863 Program, 2006AA100201,2006AA100223)the National Basic Research Programof China (973 Program, 2006CB708208)+1 种基金the 111 Pro-gram of Introducing Talents of Discipline to Universi-ties of China (111-2-16)the ACIAR Program of Australia (CIM/2005/111)
文摘Understanding the effects of wheat dwarfing genes on the coleoptile length and plant height is crucial for the proper utilization of dwarfing genes in the improvement of wheat yield. Molecular marker analysis combined with pedigree information were used to classify wheat cultivars widely planted in major wheat growing regions in China into different categories based on the dwarfing genes they carried. The effects of the dwarfing genes with different sensitivity to gibberellins (GA3) on the coleoptile length and plant height were analyzed. Screening of 129 cultivars by molecular marker analysis revealed that 58 genotypes of wheat contained the dwarfing gene Rht-B1b, 24 genotypes of wheat contained Rht-D1b gene and 73 genotypes of wheat possessed Rht8 gene. In addition, among these 129 cultivars, 35 genotypes of wheat cultivars contained both Rht-B1b and Rht8 genes and 16 genotypes of wheat cultivars contained both Rht-D1b and Rht8 genes. Wheat cultivars with the dwarfing genes Rht-B1b or Rht-D1b were insensitive to GA3, while the cultivars with the dwarfing gene Rht8 were sensitive to GA3. Most of the wheat genotypes containing combination of Rht8 gene with either Rht-B1b or Rht-D1b gene were insensitive to GA3. The plant height was reduced by 24.6, 30.4, 28.2, and 32.2%, respectively, for the wheat cultivars containing Rht-B1b, Rht-D1b, Rht-B1b + Rht8, and Rht-D1b + Rht8 genes. The plant height was reduced by 14.3% for the wheat cultivar containing GA3-sensitive gene Rht8. The coleoptile length was shortened by 25.4, 31.3, 28.4 and 31.3%, respectively, in the wheat cultivars containing Rht-B1b, Rht-D1b, Rht-B1b +Rht8 and Rht-D1b + Rht8 genes, while the coleoptile length was shortened only by 6.2% for the wheat cultivar containing Rht8 gene. We conclude that GA3-insensitive dwarfing genes (Rht-B1b and Rht-D1b) are not suitable for the wheat improvement in dryland because these two genes have effect on reducing both plant height and coleoptile length. In contrast, GA3- sensitive dwarfing gene (Rht8) is a relatively ideal candidate for the wheat improvement since it significantly reduces the plant height of wheat, but has less effect on the coleoptile length.
基金This paper was translated from its Chinese version in Chinese Journal of Rice Science.
文摘By using a set of recombinant inbred line (RIL) population involving in 195 lines derived from a cross of Zhenshan 97B (lowland variety) and IRAT109 (upland variety), the correlation analysis between coleoptile length (CL) and drought resistance index (DRI) and their QTL identification were conducted. There existed a significantly positive relationship between CL and DRI with the correlation coefficient of 0.2206** under water stress conditions. Under normal and water stress conditions, a total of eleven and four QTLs for CL and DRI, respectively, were detected on chromosomes 1,2, 4, 5, 6, 7, 9, 11 and 12 by using a linkage map including 213 SSR markers, which explained 4.84% to 22.65% of phenotypic variance. Chromosomes 1 and 9 possessing the QTLs for DRI harbored simultaneously QTLs for CL, and qCL9 shared the same chromosome location with qDR19 (RM160-RM215). Comparing the QTLs related to drought resistance in other studies, QTLs for CL and DRI were located in the same or adjacent marker interval as those related to root traits, such as number, dry weight, depth, and length of root. Moreover, sixteen and three pairs of epistatic loci for CL and DRI were found, which accounted for 56.17% and 11.93% of the total variation in CL and DRI, respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.31701390 and 31370349)Special Project on Performance Incentive Guidance of Chongqing Scientific Research Institution,China(Grant No.cstc2018jxjl80021)+1 种基金Chongqing Agriculture Development Fund(Grant No.NKY-2021AC003)Recruitment Announcement for High-level Talents of Yunnan University(Grant No.KL180018).
文摘In plants,a large number of anthocyanin biosynthetic genes encoding enzymes and regulatory genes encoding transcription factors are required for anthocyanin synthesis.Coleoptile purple lines are two purple lines on both sides of coleoptiles after seed germination.However,the molecular mechanism of coleoptile purple line is not clear in rice so far.In this study,two major dominant genes,coleoptile purple line 1(OsCPL1,also known as OsC1)and coleoptile purple line 2(OsCPL2),were isolated via map-based cloning,and both of them were required for anthocyanin biosynthesis of coleoptile purple line in rice.The knockout and complementation experiments confirmed that OsC1 was required for purple color in most organs,such as coleoptile line,sheath,auricle,stigma and apiculus,whereas OsCPL2 was just required for coleoptile purple line.OsC1 was predominantly expressed in coleoptiles,flag leaves,and green panicles,and highly expressed in young leaves,whereas OsCPL2 was predominantly expressed in coleoptiles,and extremely lowly expressed in the other tested organs.Loss-of-function of either OsC1 or OsCPL2 resulted in significant reduction of transcript levels of multiple anthocyanin biosynthesis genes in coleoptiles.Coleoptile purple line was further used as a marker trait in hybrid rice.Purity identification in hybrid rice seeds via coleoptile purple line just needed a little water,soil and a small plate and could be completed within 5 d.Molecular marker and field identification analyses indicated that coleoptile purple line was reliable for the hybrid seed purity identification.Our findings disclosed that coleoptile purple line in rice was regulated by two major dominant genes,OsC1 and OsCPL2,and can be used as a simple,rapid,accurate and economic marker trait for seed purity identification in hybrid rice.
文摘The high growth-stimulating effect of plant extract has urged the plant biotechnologists to use natural supplements in the culture media instead of synthetic phytohormones. We advocated the effect of sprouted sorghum extract(SSE) on emergence, in vitro acclimatization, and genetic fidelity in coleoptile derived callus of indica rice variety ADT36. The use of SSE with Murashige Skoog medium efficiently acclimatized the root and shoot apical systems. A higher mat and seminal roots(3.4 g biomass) with an efficient shoot primordium elongation were observed with an increase in the concentration of SSE. Seeds treated with SSE medium showed higher germination and earlier coleoptile maturation about 48 h compared to untreated seeds, and there was a higher expression of e EF-1α with an increase in coleoptile length. B5 medium was effective on inducing embryogenic and nodular callus from 3-day-old coleoptile with 3.0 mg/L 2,4-dichlorophenoxyacetic acid and further proliferated effectively with 0.8 mg/L kinetin with a fresh weight of 180 mg. Highly significant regeneration was observed with combination of 2.5 mg/L 6-benzylamino purine and 3.0 mg/L α-naphthaleneacetic acid. The metabolic and genetic profiles of in vitro and directly cultivated plants were the same, examined through Fourier-transform infrared spectroscopy, random amplified polymorphic DNA(RAPD), inter-simple sequence repeat(ISSR) and R-ISSR(combination of RAPD and ISSR) markers, respectively, and thus confirming the significant efficacy of the SSE incorporated medium. Disarmed T-DNA was transformed to coleoptile derived callus through Agrobacterium tumefaciens LBA4404 and confirmed by GUS assay. The T-DNA integration was confirmed by DNA blot analysis using DNA from transient GUS-expressed explants. Thus, SSE can be used as a natural and organic supplement for organogenesis and efficient acclimatizations of shoot and root apical meristems in regenerated plants.
基金supported by grants from the Natural Science Foundation of Heilongjiang Province, China (LH2020C098)the Fundamental Research Funds for the Research Institutes of Heilongjiang Province, China (CZKYF2020A001)+1 种基金the National Key Research and Development Program of China (2016YFD0300104)the Heilongjiang Province Agricultural Science and Technology Innovation Project, China (2020JCQN001, 2019JJPY007, 2020FJZX049, 2021QKPY009, 2021CQJC003)。
文摘Rice direct seeding has the significant potential to save labor and water,conserve environmental resources,and reduce greenhouse gas emissions tremendously.Therefore,rice direct seeding is becoming the major cultivation technology applied to rice production in many countries.Identifying and utilizing genes controlling mesocotyl elongation is an effective approach to accelerate breeding procedures and meet the requirements for direct-seeded rice(DSR) production.This study used a permanent mapping population with 144 recombinant inbred lines(RILs) and 2 828 bin-markers to detect quantitative trait loci(QTLs) associated with mesocotyl length in 2019 and 2020.The mesocotyl lengths of the rice RILs and their parents,Lijiangxintuanheigu(LTH) and Shennong 265(SN265),were measured in a growth chamber at 30°C in a dark environment.A total of 16 QTLs for mesocotyl length were identified on chromosomes 1(2),2(4),3(2),4,5,6,7,9,11(2),and 12.Seven of these QTLs,including qML1a,qML1b,qML2d,qML3a,qML3b,qML5,and qML11b,were reproducibly detected in both years via the interval mapping method.The major QTL,qML3a,was reidentified in two years via the composite interval mapping method.A total of 10 to 413 annotated genes for each QTL were identified in their smallest genetic intervals of 37.69 kb to 2.78 Mb,respectively.Thirteen predicted genes within a relatively small genetic interval(88.18 kb) of the major mesocotyl elongation QTL,qML3a,were more thoroughly analyzed.Finally,the coding DNA sequence variations among SN265,LTH,and Nipponbare indicated that the LOC_Os03g50550 gene was the strongest candidate gene for the qML3a QTL controlling the mesocotyl elongation.This LOC_Os03g50550 gene encodes a mitogen-activated protein kinase.Relative gene expression analysis using qRT-RCR further revealed that the expression levels of the LOC_Os03g50550 gene in the mesocotyl of LTH were significantly lower than in the mesocotyl of SN265.In conclusion,these results further strengthen our knowledge about rice’s genetic mechanisms of mesocotyl elongation.This investigation’s discoveries will help to accelerate breeding programs for new DSR variety development.
基金funded by National Natural Science Foundation of China grants 32272019 to R.Q.and 32030079 to R.H.the Agricultural Science and Technology Innovation Program (ASTIP No.CAAS-ZDRW202201)of the Chinese Academy of Agricultural Sciences.
文摘Successful emergence from the soil is a prerequisite for survival of germinating seeds in their natural envi-ronment.In rice,coleoptile elongation facilitates seedling emergence and establishment,and ethylene plays an important role in this process.However,the underlying regulatory mechanism remains largely unclear.Here,we report that ethylene promotes cell elongation and inhibits cell expansion in rice coleoptiles,result-ing in longer and thinner coleoptiles that facilitate seedlings emergence from the soil.Transcriptome analysis showed that genes related to reactive oxygen species(ROS)generation are upregulated and genes involved in ROS scavenging are downregulated in the coleoptiles of ethylene-signaling mutants.Further investiga-tions showed that soil coverage promotes accumulation of ETHYLENE INSENSITIVE 3-LIKE 1(OsEIL1)and OsEIL2 in the upper region of the coleoptile,and both OsEIL1 and OsEIL2 can bind directly to the promoters of the GDP-mannose pyrophosphorylase(VTC1)gene OsVTC1-3 and the peroxidase(PRX)genes OsPRX37,OsPRX81,OsPRX82,and OsPRX88 to activate their expression.This leads to increased ascorbic acid content,greater peroxidase activity,and decreased ROS accumulation in the upper region of the coleoptile.Disruption of ROS accumulation promotes coleoptile growth and seedling emergence from soil.Thesendings deepen our understanding of the roles of ethylene and ROS in controlling coleoptile growth,and this information can be used by breeders to produce rice varieties suitable for direct seeding.
基金the Special NationalPrograms for Pioneer Research(Projecn No.2002CCA04100)Zhejiang Provincial Key Programs for Scicnce and Technology(Project No.021102169)Natural Sciences Foundation of Zhejiang Province(Project No.301252).
文摘The lengths of mesocotyl in the seedlings of 84 lowland rice varieties and 12 upland rice varieties were measured following the treatments of daylight and darkness during germination. The elongation of mesocotyl in the varieties tested was inhibited under daylight condition, and the mesocotyl of all the varieties elongated variably under darkness condition. The elongated lengths of the mesocotyl in upland rice, ranging from 0.36 cm to 1,61 cm with an average of 0.81 cm, was obviously longer than those in lowland rice, ranging from 0.12 cm to 1.56 cm with an average of 0.42 cm. Among 14 rice varieties with over 1 cm of mesocotyl length, five belonged to upland rice, and nine to lowland rice. The possible utilization of the elongated-mesocotyl rice germplasm in varietal imorovement, direct-seeded plantina and seed ouritv testina were discussed.
基金financially supported by the National S&T Major Project of China(2016ZX08001006)the National Key Research and Development Program of China(2016YFD0101801 and 2017YFD0100300)the Agricultural Science and Technology Innovation Program of CAAS。
文摘The mesocotyl,a structure located between the basal part of the seminal root and the coleoptile node of seedlings,contributes to pushing the shoot tip through the soil surface,a function that is essential for the uniform emergence of direct-seeded rice.Its elongation is inhibited by light and induced in darkness.This investigation of an indica rice(P25)with vigorous mesocotyl elongation was aimed at identifying the"omics"basis of its lightinduced growth inhibition.A transcriptomic comparison between mesocotyl tissues that had developed in the dark and then been exposed to light identified many differentially expressed genes(DEGs)and differentially abundant micro RNAs(mi RNAs).Degradome sequencing analysis revealed 27 negative mi RNA-target pairs.A co-expression regulatory network was constructed based on the mi RNAs,their corresponding targets,and DEGs with a common Gene Ontology term.It suggested that auxin and light,probably antagonistically,affect mesocotyl elongation by regulating polyamine oxidase activity.