Some new mesogen-jacketed liquid crystalline polymers (MJLCP) with polymer backbones, spacers, and mesogenic units of different structures were synthesized by radical polymerization. The mesomorphic behavior of these ...Some new mesogen-jacketed liquid crystalline polymers (MJLCP) with polymer backbones, spacers, and mesogenic units of different structures were synthesized by radical polymerization. The mesomorphic behavior of these polymers was examined using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Their liquid crystallinity is influenced by the variation of polymer backbone, spacer, mesogenic unit and its terminal groups. The results show that 1) a more flexible polymer main-chain is more favorable to the formation of a liquid crystal phase, while 2) a flexible spacer will decrease the 'Jacket Effect' and the liquid crystallinity and 3) a subtle modification of the terminal groups on the mesogenic unit may also have a significant influence on properties of the polymers.展开更多
New liquid crystalline monomer,2,5-bis[(4'-methoxyphenoxy)carbonyl]phenyl acrylate was successfully synthesized.Polyacrylate with laterally attached mesogens via ei;ter linkage was also derived.This polymer forms ...New liquid crystalline monomer,2,5-bis[(4'-methoxyphenoxy)carbonyl]phenyl acrylate was successfully synthesized.Polyacrylate with laterally attached mesogens via ei;ter linkage was also derived.This polymer forms an enantiotropic liquid crystal phase while its monomer exhibits a metastable nematic phase with respect to the crystalline state.However,its liquid crystallinity is very low as compared to that of poly{2,5-bis[(4'-methoxyphenoxy)carbonyl]-styrene}.展开更多
The effects of mesogen-jacketed liquid crystalline polymer poly(dipropyl vinylterephthalate)(PDPVT) on the mechanical and thermal properties of diglycidyl ether of bisphenol-A(DGEBA) epoxy resin were investigated by i...The effects of mesogen-jacketed liquid crystalline polymer poly(dipropyl vinylterephthalate)(PDPVT) on the mechanical and thermal properties of diglycidyl ether of bisphenol-A(DGEBA) epoxy resin were investigated by impact test, tensile test and thermogravimetric analysis(TGA). The mechanism underlying the enhancement of mechanical properties of epoxy resin was studied using 1D wide-angle X-ray diffraction(WAXD) and scanning electron microscope(SEM). It was found that the mechanical properties of 1 wt%–5 wt% PDPVT/DGEBA composites were significantly improved compared to neat epoxy resin. Especially, the epoxy resin with 3 wt% PDPVT had the greatest increase in mechanical properties, with the impact strength, tensile strength and elongation while breaking increased by 87%, 59% and 174%, respectively. The increased mechanical strength was due to the fact that PDPVT maintained liquid crystalline phase in cured PDPVT/DGEBA composites, which would blunt the crack tip and prevent crack propagation. Moreover, PDPVT had slight effect on the thermal stability properties of epoxy resin.展开更多
Mesogen-jacketed liquid crystalline polymer (MJLCP) has attracted great attention because of its rigid conformation, facile synthesis, and structural controllability. In this feature article, the self-assembly of MJ...Mesogen-jacketed liquid crystalline polymer (MJLCP) has attracted great attention because of its rigid conformation, facile synthesis, and structural controllability. In this feature article, the self-assembly of MJLCP-based block copolymers (BCPs) is briefly reviewed, especially the nanostructures of rod-coil diblock copolymers (diBCPs), rod-rod diBCPs, and triblock copolymers. In addition, the properties of the self-assembled BCPs are also summarized, including their applications as liquid crystalline thermoplastic elastomers and solid polymer electrolytes. The article also discusses the major challenges and future directions in the study of MJLCP-based BCPs.展开更多
基金This Project was supported by China Postdoctoral Science Foundation and National Natural Science Foundation of China (No. 59873001).
文摘Some new mesogen-jacketed liquid crystalline polymers (MJLCP) with polymer backbones, spacers, and mesogenic units of different structures were synthesized by radical polymerization. The mesomorphic behavior of these polymers was examined using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Their liquid crystallinity is influenced by the variation of polymer backbone, spacer, mesogenic unit and its terminal groups. The results show that 1) a more flexible polymer main-chain is more favorable to the formation of a liquid crystal phase, while 2) a flexible spacer will decrease the 'Jacket Effect' and the liquid crystallinity and 3) a subtle modification of the terminal groups on the mesogenic unit may also have a significant influence on properties of the polymers.
基金This project was supported by China Postdoctoral Science Foundation and National Natural Science Foundation of China(No.59873001).
文摘New liquid crystalline monomer,2,5-bis[(4'-methoxyphenoxy)carbonyl]phenyl acrylate was successfully synthesized.Polyacrylate with laterally attached mesogens via ei;ter linkage was also derived.This polymer forms an enantiotropic liquid crystal phase while its monomer exhibits a metastable nematic phase with respect to the crystalline state.However,its liquid crystallinity is very low as compared to that of poly{2,5-bis[(4'-methoxyphenoxy)carbonyl]-styrene}.
基金financially supported by the National Natural Science Foundation of China(51343008)
文摘The effects of mesogen-jacketed liquid crystalline polymer poly(dipropyl vinylterephthalate)(PDPVT) on the mechanical and thermal properties of diglycidyl ether of bisphenol-A(DGEBA) epoxy resin were investigated by impact test, tensile test and thermogravimetric analysis(TGA). The mechanism underlying the enhancement of mechanical properties of epoxy resin was studied using 1D wide-angle X-ray diffraction(WAXD) and scanning electron microscope(SEM). It was found that the mechanical properties of 1 wt%–5 wt% PDPVT/DGEBA composites were significantly improved compared to neat epoxy resin. Especially, the epoxy resin with 3 wt% PDPVT had the greatest increase in mechanical properties, with the impact strength, tensile strength and elongation while breaking increased by 87%, 59% and 174%, respectively. The increased mechanical strength was due to the fact that PDPVT maintained liquid crystalline phase in cured PDPVT/DGEBA composites, which would blunt the crack tip and prevent crack propagation. Moreover, PDPVT had slight effect on the thermal stability properties of epoxy resin.
文摘Mesogen-jacketed liquid crystalline polymer (MJLCP) has attracted great attention because of its rigid conformation, facile synthesis, and structural controllability. In this feature article, the self-assembly of MJLCP-based block copolymers (BCPs) is briefly reviewed, especially the nanostructures of rod-coil diblock copolymers (diBCPs), rod-rod diBCPs, and triblock copolymers. In addition, the properties of the self-assembled BCPs are also summarized, including their applications as liquid crystalline thermoplastic elastomers and solid polymer electrolytes. The article also discusses the major challenges and future directions in the study of MJLCP-based BCPs.