With the full-vector plane-wave method (FVPWM) and the full-vector beam propagation method (FVBPM), the dependences of the band-gap and mode characteristics on material index and cladding structure parameter in an...With the full-vector plane-wave method (FVPWM) and the full-vector beam propagation method (FVBPM), the dependences of the band-gap and mode characteristics on material index and cladding structure parameter in anti- resonance guiding photonic crystal fibres (ARGPCFs) are sufficiently analysed. An ARGPCF operating in the near- infrared wavelength is shown. The influences of the high index cylinders, glass interstitial apexes and silica structure on the characteristics of band-gaps and modes are deeply investigated. The equivalent planar waveguide theory is used for analysing such an ARGPCF filled by the isotropic materials, and the resonance and the anti-resonance characteristics r:~n h~ w~|] r^r~dlrtpd展开更多
The immunity of topological states against backscattering and structural defects provides them with a unique advantage in the exploration and design of high-precision low-loss optical devices.However,the operating ban...The immunity of topological states against backscattering and structural defects provides them with a unique advantage in the exploration and design of high-precision low-loss optical devices.However,the operating bandwidth of the topological states in certain photonic structures is difficult to actively tune and flexibly reconfigure.In this study,we propose a valley topological photonic crystal(TPC)comprising two inverse honeycomb photonic crystals,consisting of hexagonal silicon and Ge2Sb2Te5(GST)rods.When GST transitions from the amorphous phase to the crystalline phase,the edge band of the TPC appears as a significant redshift and is inversed from a“∪”to an“∩”shape with topological phase transition,which enables active tuning of the operating bandwidth and propagation direction of topological edge states.Both the topological edge and corner states in a triangular structure constructed using TPCs can be simultaneously adjusted and reconfigured via GST phase transition,along with a change in the group number of corner states.Using the adjustability of topological edge states and electromagnetic coupling between two different topological bearded interfaces,we develop a multichannel optical router with a high tuning degree of freedom,where channels can be actively reconfigured and their on/off states can be freely switched.Our study provides a strategy for the active regulation of topological states and may be beneficial for the development of reconfigurable topological optical devices.展开更多
The macropore silica colloidal crystal templates were assembled orderly in a capillary glass tube by an applied electric field method to control silica deposition. In order to achieve the photonic band gap (PBG) of ...The macropore silica colloidal crystal templates were assembled orderly in a capillary glass tube by an applied electric field method to control silica deposition. In order to achieve the photonic band gap (PBG) of colloidal crystal in optical communication waveband, the diameter of silica microspheres is selected by Bragg diffraction formula. An experiment was designed to test the bandgap of the silica crystal templates. This paper discusses the formation process and the close-packed fashion of the silica colloidal crystal templates was discussed. The surface morphology of the templates was also analyzed. The results showed that the close-packed fashion of silica array templates was face-centered cubic (FCC) structure: The agreement is very good between the experimental data and the theoretical calculation.展开更多
One-dimensional alumina photonic crystals with defect modes were successfully fabricated through inserting a constant voltage waveform into the periodic voltage signals. The trans-mission spectra show that the thickne...One-dimensional alumina photonic crystals with defect modes were successfully fabricated through inserting a constant voltage waveform into the periodic voltage signals. The trans-mission spectra show that the thickness of defects plays a key role in determining the trans-mittance of defect modes. When the thickness was ?180 nm, an obvious defect mode with the high transmittance of 55% and a narrow full width at half maximum of 18 nm was observed in the original photonic band gaps. The defect mode shifted linearly with the increasing of refractive index of the analytes infiltrated into pores, indicating its potential application in chemical sensing or bio-sensing.展开更多
Optical diode behavior of asymmetric one-dimensional photonic crystal with Kerr defect is numerically investigated using nonlinear transfer matrix method. In the linear case, the intensity and the phase of transmitted...Optical diode behavior of asymmetric one-dimensional photonic crystal with Kerr defect is numerically investigated using nonlinear transfer matrix method. In the linear case, the intensity and the phase of transmitted field are the same for the forward and backward operations. In the nonlinear case, however, the transmitted intensities are much different for the two operations, which display diode characteristic. Physical origin of the anisotropic transmission lies in the different localizations in the defect layer of the two operations.展开更多
Antichiral gyromagnetic photonic crystal(GPC)in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states pr...Antichiral gyromagnetic photonic crystal(GPC)in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges.Here,we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC.The splitter is compact and configurable,has high trans-mission efficiency,and allows for multi-channel utilization,crosstalk-proof,and robust against defects and obstacles.This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC.When we combine two rectangular antichiral GPCs holding left-and right-propagating antichiral one-way edge states respectively,bidirectionally radiating one-way edge states at two paral-lel zigzag edges can be achieved.Our observations can enrich the understanding of fundamental physics and expand to-pological photonic applications.展开更多
Application of the pressure controlled isothermal heating vertical deposition method to the fabrication of colloidal photonic crystals is systematically investigated in this paper. The fabricated samples are character...Application of the pressure controlled isothermal heating vertical deposition method to the fabrication of colloidal photonic crystals is systematically investigated in this paper. The fabricated samples are characterized by scanning electron microscope and transmission spectrum. High-quality samples with large transmissions in the pass bands and the sharp band edges are obtained and the optimum growth condition is determined. For the best sample, the transmission in the pass bands approaches 0.9 while that in the band gap reaches 0.1. More importantly, the maximum differential transmission as high as 0.1/nm is achieved. In addition, it is found that the number of stacking layers does not increase linearly with concentration of PS spheres in a solution, and a gradual saturation occurs when the concentration of PS spheres exceeds 1.5 wt.%. The uniformity of the fabricated samples is examined by transmission measurements on areas with different sizes. Finally, the tolerance of the fabricated samples to baking was studied.展开更多
A gain assisted double negative- Metallo-semiconductor photonic crystal (DN-MSPC) for visible light with effect of different plasmonic (Al, Ag, Au, Cu) nanorod inclusion, is presented. Negative real values of both...A gain assisted double negative- Metallo-semiconductor photonic crystal (DN-MSPC) for visible light with effect of different plasmonic (Al, Ag, Au, Cu) nanorod inclusion, is presented. Negative real values of both permeability (μ) and permittivity (ε) with extremely low imaginary values for visible light is obtained by applying Coupled dipole approximation. All-Angle negative refraction is obtained by applying surface plasmon polariton excitation (SPPE) in DN-MSPC operating in a dispersion regime with anti-parallel refracted wave vector and Poynting vector. Index matched to the incident light and compensated losses due the gain assistance leads the light amplification in the designed structure. Furthermore, extremely high left-handed transmission efficiency (〉99%) is also investigated. Demonstration of near and far-field resonance patterns reveal the nano-photonic device applications potential i.e. highly directional optical nanoantenna, filter, etc.展开更多
A method to realize absolute negative refraction index -1 with a two-dimensional (2D) photonic crystal is presented by introducing dielectric anisotropy in the photonic crystal material. The band structures of E-pol...A method to realize absolute negative refraction index -1 with a two-dimensional (2D) photonic crystal is presented by introducing dielectric anisotropy in the photonic crystal material. The band structures of E-polarization mode and H-polarization mode can be adjusted by changing the parameters of materials. Thus the two modes with different polarizations have the same negative refraction index -1 for the same frequency. The results are demonstrated by numerical simulation based on the finite-difference time-domain (FDTD) method.展开更多
We studied the resonant tunneling properties of one-dimensional photonic crystals consisting of single-negative permittivity and single-negative permeability media using transfer matrix methods.The results show that t...We studied the resonant tunneling properties of one-dimensional photonic crystals consisting of single-negative permittivity and single-negative permeability media using transfer matrix methods.The results show that there exists a pair of resonant tunneling modes in this structure.The separation of the pair of tunneling modes can be tuned by varying the ratio of thicknesses of the two single-negative layers or the thickness of the defect layer.The electric field intensity of the resonant tunneling modes increases rapidly with the increase of the ratio of thicknesses of the two single-negative layers.The peak value of the field intensity of the resonant tunneling modes is enhanced by one order of magnitude when the ratio of thicknesses of the two single-negative layers increases by 0.4.This property will be applied widely in the field of nonlinearity optics.With the increase of the ratio of thicknesses of the two single-negative layers,the electric field of the tunneling modes becomes more localized,and the full width at half maximum of the tunneling modes becomes narrower.Besides,the pair of tunneling modes is insensitive to incident angle and thickness fluctuation.These properties will be used for the design of tunable omnidirectional double-channel filter with high quality factor.展开更多
Many works on topological insulators have focused on periodic lattice systems,where short-and long-range order is considered.Here we construct a two-dimensional amorphous photonic crystal with short-range order and a ...Many works on topological insulators have focused on periodic lattice systems,where short-and long-range order is considered.Here we construct a two-dimensional amorphous photonic crystal with short-range order and a controllable level of long-range order and experimentally investigate the transport of topological edge states in this amorphous system.We demonstrate that topology properties remain constant with unidirectional edge state propagation,immune to specific disorder strength.The partition phenomena of edge states are also observed at the intersection of four topological channels in microwave experiments.This proposed amorphous configuration provides new opportunities to explore the relationship between short-range order and topology and may alleviate the fabrication difficulties of topological optical devices for practical applications.展开更多
On the basis of two-dimensional amorphous photonic materials, we have designed a novel waveguide by inserting thinner cylindrical inclusions in the centre of basic hexagonal units of the amorphous structure along a gi...On the basis of two-dimensional amorphous photonic materials, we have designed a novel waveguide by inserting thinner cylindrical inclusions in the centre of basic hexagonal units of the amorphous structure along a given path. This waveguide in amorphous structure is similar to the coupled resonator optical waveguides in periodic photonic crystals. The transmission of this waveguide for S-polarized waves is investigated by a multiple-scattering method. Compared with the conventional waveguide by removing a line of cells from amorphous photonic materials, the guiding properties of this waveguide, including the transmissivity and bandwidth, are improved significantly. Then we study the effect of various types of positional disorder on the functionality of this device. Our results show that the waveguide performance is quite sensitive to the disorder located on the boundary layer of the waveguide, but robust against the disorder in the other area in amorphous structure except the waveguide border. This disorder effect in amorphous photonic materials is similar to the case in periodic photonic crystals.展开更多
The observation of topological edge states(TESs) revolutionized our understanding of scattering and propagation of electromagnetic(EM) waves. Supported by topological robustness, the TES at the interface between trivi...The observation of topological edge states(TESs) revolutionized our understanding of scattering and propagation of electromagnetic(EM) waves. Supported by topological robustness, the TES at the interface between trivial and non-trivial insulators was not reflected from the structural disorders and imperfections. Recently topological photonic crystals(PhCs) were demonstrated to obtain remarkable one-way propagation of the TES, having the advantages of lossless propagation, dense integration, and high fabrication tolerance over conventional PhCs. Nevertheless, the lack of reversible switching of TES possesses significant limitations in helicity/spin filtering and tunable photonic devices. We proposed a topological PhC based on a prototypical phase-change material, Ge2 Sb2 Te5(GST225) to solve the problem. We find that at a particular frequency, the TES within the structure can be reversibly switched between "on"and "off" by transiting the GST225 structural state between amorphous and crystalline. Moreover, the topology of the PhC was maintained since the tuning of TES was achieved by varying the refractive index of GST225 instead of the structural geometry. This provides a continuous change of the spectral position of the photonic bandgap and TES by gradually crystallising the GST225. We show that the phase change of GST225 from amorphous to crystalline and vice versa can be engineered in nanoseconds. Our proof of concept may offer a platform for dynamically tuning the TESs that might otherwise be challenging to attain in photonic systems. We expect it to have potential applications for photonic devices in topological optical circuits and scatter-free one-way light propagation.展开更多
A numerical analysis on dual core photonic crystal fiber (DC-PCF) based surface plasmon resonance (SPR) refractive index sensor is presented. The guiding parameters and required sensing performances are examined with ...A numerical analysis on dual core photonic crystal fiber (DC-PCF) based surface plasmon resonance (SPR) refractive index sensor is presented. The guiding parameters and required sensing performances are examined with finite element method (FEM) based software under MATLAB environment. According to simulation, it is warranted that the proposed refractive index sensor offers the maximum amplitude sensitivity of 554.9 refractive index unit (RIU-1) and 636.5 RIU 1 with the maximum wavelength sensitivity of 5800nm/RIU and 11 500nm/RIU, and the sensor resolutions of 1.72 ×10^-5RIU and 8.7× 10^-6 RIU, at analyte refractive index (RI) of 1.40 for x- and y-polarized modes, respectively. As the sensing performance in different wavelength ranges is quite high, the proposed sensor can be used in simultaneous detection for different wavelength ranges. Therefore, the proposed device is of a suitable platform for detecting biological, chemical, biochemical, and organic chemical analytes.展开更多
A novel broadband directional coupler based on an asymmetric dual-core photonic crystal fibet(PCF)is proposed.The asymmetry in the fiher is introduced by the enlargement of one air-hole in dual-core PCF.Numerical inve...A novel broadband directional coupler based on an asymmetric dual-core photonic crystal fibet(PCF)is proposed.The asymmetry in the fiher is introduced by the enlargement of one air-hole in dual-core PCF.Numerical investigation demonstrate that broadband directional coupling with spectral width as large as 370 nm and polarization-dependent loss and uniformity lower than 0.2 and 0.5 dB,respectively,can be achieved.In addition,the proposed fiber shows large tolerance to the variation of the fiber parameters.In particular,the fiber length allows at least 10%derivation from the proposed fiber length of 7.7 mm.展开更多
The novel material of photonic crystal makes it possible to control a photon, and the photonic integration will have breakthrough progress due to the application of photonic crystal. It is based on the photonic crysta...The novel material of photonic crystal makes it possible to control a photon, and the photonic integration will have breakthrough progress due to the application of photonic crystal. It is based on the photonic crystal device that the photonic crystal integration could be realized. Therefore, we should first investigate photonic crystal devices based on the active and the passive semiconductor materials, which may have great potential application in photonic integration. The most practical and important method to fabricate two-dimensional photonic crystal is the micro-manufacture method. In this paper, we summarize and evaluate the fabrication methods of two-dimensional photonic crystal in near-infrared region, including electron beam lithography, selection of mask, dry etching, and some works of ours. This will be beneficial to the study of the photonic crystal in China.展开更多
In this work, the influences of dielectrics with light absorption on the photonic bandgaps (PBGs) of porous alumina photonic crystals (PCs) were studied. Transmittance spectra of porous alumina PCs adsorbing ethan...In this work, the influences of dielectrics with light absorption on the photonic bandgaps (PBGs) of porous alumina photonic crystals (PCs) were studied. Transmittance spectra of porous alumina PCs adsorbing ethanol showed that all the PBGs positions red-shifted; however, the transmittance of the PBG bottom showed different trends when the PBGs were located in different wavelength regions. In the near infrared region, liquid ethanol has strong light absorption, and, with the increase in adsorption, the PBG bottom transmittance of porous alumina PCs first increased and then decreased. However, in the visible light region, liquid ethanol has little light absorption, and thus, with the increase in adsorption, the PBG bottom transmittance of porous alumina PCs increased gradually all the time. Simulated results were consistent with the experimental results. The capillary condensation of organic vapors in the pores of porous alumina accounted for the change in the PBG bottom transmittance. The non- negligible light absorption of the organic vapors was the cause of the decrease in the transmittance. The results for porous alumina PC adsorbing methanol, acetone, and toluene further confirmed the influences of light absorption on the PBG bottomed transmittance.展开更多
This Letter introduces the design and simulation of a microstrip-line-based electro-optic (EO) polymer optical phase modulator (PM) that is further enhanced by the addition of photonic crystal (PhC) structures t...This Letter introduces the design and simulation of a microstrip-line-based electro-optic (EO) polymer optical phase modulator (PM) that is further enhanced by the addition of photonic crystal (PhC) structures that are in close proximity to the optical core. The slow-wave PhC structure is designed for two different material configurations and placed in the modulator as a superstrate to the optical core; simulation results are depicted for both 1D and 2D PhC structures. The PM characteristics are modeled using a combination of the finite element method and the optical beam propagation method in both the RF and optical domains, respectively. The phase-shift simulation results show a factor of 1.7 increase in an effective EO coefficient (120 pm/V) while maintaining a broadband bandwidth of 40 GHz.展开更多
We design an ultra-compact water temperature sensor by using the photonic crystal technology on the InP substrate at the 1.55-μm wavelength window. The photonic crystal consists of rods in a hexagonal lattice and a p...We design an ultra-compact water temperature sensor by using the photonic crystal technology on the InP substrate at the 1.55-μm wavelength window. The photonic crystal consists of rods in a hexagonal lattice and a polymethyl methacrylate (PMMA) background. By using the plane wave expansion (PWE) method, the lattice constant and radius of rods are obtained, 520nm and 80.6nm, respectively. With a nanocavity placed in the waveguide, a resonance peak is observed at the 1.55-μm wavelength window. Any change of the water temperature inside the nanocavity results in the shift of the resonance wavelength. Our simulations show a shift of about 11 nm for a temperature change of 22.5 ℃. The resonance wavelength has a linear relation with the water temperature.展开更多
This article designs a novel type of non-bravais lattice photonic crystal fiber.To form the nesting complexperiod with positive and negative refractive index materials respectively,a cylinder with the same radius and ...This article designs a novel type of non-bravais lattice photonic crystal fiber.To form the nesting complexperiod with positive and negative refractive index materials respectively,a cylinder with the same radius and negative refractive index is introduced into the center of each lattice unit cell in the traditional square lattice air-holes photonic crystal fiber.The photonic band-gap of the photonic crystal fiber is calculated numerically by the plane wave expansion method.The result shows that compared with the traditional square photonic band-gap fiber(PBGF),when R=Λis 0.35,the refractive index of the substrate,airhole,and medium-column are 1.30,1.0,and–1:0,respectively.This new PBGF can transmit signal by the photonic band-gap effect.When the lattice constantΛvaries from 1:5μm to 3:0μm,the range of the wavelength ranges from 880 nm to 2300 nm.展开更多
基金partly supported by the National Key Basic Research Special Foundation of China (Grant Nos. 2010CB327605 and 2010CB328300)the National High-Technology Research and Development Program of China (Grant No. 2009AA01Z220)+3 种基金the Key Grant of the Chinese Ministry of Education (Grant No. 109015)the Discipline Co-construction Project of Beijing Municipal Commission of Education,China (Grant No. YB20081001301)the Open Fund of Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications),Chinese Ministry of Educationthe Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications (Grant No. CX201023)
文摘With the full-vector plane-wave method (FVPWM) and the full-vector beam propagation method (FVBPM), the dependences of the band-gap and mode characteristics on material index and cladding structure parameter in anti- resonance guiding photonic crystal fibres (ARGPCFs) are sufficiently analysed. An ARGPCF operating in the near- infrared wavelength is shown. The influences of the high index cylinders, glass interstitial apexes and silica structure on the characteristics of band-gaps and modes are deeply investigated. The equivalent planar waveguide theory is used for analysing such an ARGPCF filled by the isotropic materials, and the resonance and the anti-resonance characteristics r:~n h~ w~|] r^r~dlrtpd
文摘The immunity of topological states against backscattering and structural defects provides them with a unique advantage in the exploration and design of high-precision low-loss optical devices.However,the operating bandwidth of the topological states in certain photonic structures is difficult to actively tune and flexibly reconfigure.In this study,we propose a valley topological photonic crystal(TPC)comprising two inverse honeycomb photonic crystals,consisting of hexagonal silicon and Ge2Sb2Te5(GST)rods.When GST transitions from the amorphous phase to the crystalline phase,the edge band of the TPC appears as a significant redshift and is inversed from a“∪”to an“∩”shape with topological phase transition,which enables active tuning of the operating bandwidth and propagation direction of topological edge states.Both the topological edge and corner states in a triangular structure constructed using TPCs can be simultaneously adjusted and reconfigured via GST phase transition,along with a change in the group number of corner states.Using the adjustability of topological edge states and electromagnetic coupling between two different topological bearded interfaces,we develop a multichannel optical router with a high tuning degree of freedom,where channels can be actively reconfigured and their on/off states can be freely switched.Our study provides a strategy for the active regulation of topological states and may be beneficial for the development of reconfigurable topological optical devices.
基金Project supported by Science and Technology Foundation of Jiangsu Province (Grant No BE2008138)
文摘The macropore silica colloidal crystal templates were assembled orderly in a capillary glass tube by an applied electric field method to control silica deposition. In order to achieve the photonic band gap (PBG) of colloidal crystal in optical communication waveband, the diameter of silica microspheres is selected by Bragg diffraction formula. An experiment was designed to test the bandgap of the silica crystal templates. This paper discusses the formation process and the close-packed fashion of the silica colloidal crystal templates was discussed. The surface morphology of the templates was also analyzed. The results showed that the close-packed fashion of silica array templates was face-centered cubic (FCC) structure: The agreement is very good between the experimental data and the theoretical calculation.
基金ACKNOWLEDGMENTS This work was supported by the National Basic Research Program of China (No.2012CB932303),the National Natural Science Foundation of China (No.11074254 and No.51171176), Hundred Talent Program of Chinese Academy of Sciences, and the President Foundation of Hefei Institute of Physical Sciences.
文摘One-dimensional alumina photonic crystals with defect modes were successfully fabricated through inserting a constant voltage waveform into the periodic voltage signals. The trans-mission spectra show that the thickness of defects plays a key role in determining the trans-mittance of defect modes. When the thickness was ?180 nm, an obvious defect mode with the high transmittance of 55% and a narrow full width at half maximum of 18 nm was observed in the original photonic band gaps. The defect mode shifted linearly with the increasing of refractive index of the analytes infiltrated into pores, indicating its potential application in chemical sensing or bio-sensing.
文摘Optical diode behavior of asymmetric one-dimensional photonic crystal with Kerr defect is numerically investigated using nonlinear transfer matrix method. In the linear case, the intensity and the phase of transmitted field are the same for the forward and backward operations. In the nonlinear case, however, the transmitted intensities are much different for the two operations, which display diode characteristic. Physical origin of the anisotropic transmission lies in the different localizations in the defect layer of the two operations.
基金the National Natural Science Foundation of China(11974119)Science and Technology Project of Guangdong(2020B010190001)+1 种基金Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06C594)National Key R&D Program of China(2018YFA 0306200).
文摘Antichiral gyromagnetic photonic crystal(GPC)in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges.Here,we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC.The splitter is compact and configurable,has high trans-mission efficiency,and allows for multi-channel utilization,crosstalk-proof,and robust against defects and obstacles.This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC.When we combine two rectangular antichiral GPCs holding left-and right-propagating antichiral one-way edge states respectively,bidirectionally radiating one-way edge states at two paral-lel zigzag edges can be achieved.Our observations can enrich the understanding of fundamental physics and expand to-pological photonic applications.
基金Project supported by the National Natural Science Foundation of China (Grant No 10674051)the Natural Science Foundation of Guangdong province, China (Grant No 06025082)+1 种基金the Program for Innovative Research Team of the Higher Education in Guangdong (Grant No 06CXTD005)the Program for New Century Excellent Talents (NCET) in University of China (Grant No ncet-04-0829)
文摘Application of the pressure controlled isothermal heating vertical deposition method to the fabrication of colloidal photonic crystals is systematically investigated in this paper. The fabricated samples are characterized by scanning electron microscope and transmission spectrum. High-quality samples with large transmissions in the pass bands and the sharp band edges are obtained and the optimum growth condition is determined. For the best sample, the transmission in the pass bands approaches 0.9 while that in the band gap reaches 0.1. More importantly, the maximum differential transmission as high as 0.1/nm is achieved. In addition, it is found that the number of stacking layers does not increase linearly with concentration of PS spheres in a solution, and a gradual saturation occurs when the concentration of PS spheres exceeds 1.5 wt.%. The uniformity of the fabricated samples is examined by transmission measurements on areas with different sizes. Finally, the tolerance of the fabricated samples to baking was studied.
基金supported by the "TIFAC Centre of Relevance and Excellence in Fiber Optics and Optical Communication at Delhi College of Engineering,Delhi" through "Mission REACH" program of Technology Vision-2020,Government of India
文摘A gain assisted double negative- Metallo-semiconductor photonic crystal (DN-MSPC) for visible light with effect of different plasmonic (Al, Ag, Au, Cu) nanorod inclusion, is presented. Negative real values of both permeability (μ) and permittivity (ε) with extremely low imaginary values for visible light is obtained by applying Coupled dipole approximation. All-Angle negative refraction is obtained by applying surface plasmon polariton excitation (SPPE) in DN-MSPC operating in a dispersion regime with anti-parallel refracted wave vector and Poynting vector. Index matched to the incident light and compensated losses due the gain assistance leads the light amplification in the designed structure. Furthermore, extremely high left-handed transmission efficiency (〉99%) is also investigated. Demonstration of near and far-field resonance patterns reveal the nano-photonic device applications potential i.e. highly directional optical nanoantenna, filter, etc.
基金This work was supported by the National Natural Science Foundation of China(No.60471047)the Natural Science Foundation of Guangdong Province(No.04011308)the Shenzhen Bureau of Science and Technology
文摘A method to realize absolute negative refraction index -1 with a two-dimensional (2D) photonic crystal is presented by introducing dielectric anisotropy in the photonic crystal material. The band structures of E-polarization mode and H-polarization mode can be adjusted by changing the parameters of materials. Thus the two modes with different polarizations have the same negative refraction index -1 for the same frequency. The results are demonstrated by numerical simulation based on the finite-difference time-domain (FDTD) method.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60268001 and 10664002) Science Foundation of Nanchang University
文摘We studied the resonant tunneling properties of one-dimensional photonic crystals consisting of single-negative permittivity and single-negative permeability media using transfer matrix methods.The results show that there exists a pair of resonant tunneling modes in this structure.The separation of the pair of tunneling modes can be tuned by varying the ratio of thicknesses of the two single-negative layers or the thickness of the defect layer.The electric field intensity of the resonant tunneling modes increases rapidly with the increase of the ratio of thicknesses of the two single-negative layers.The peak value of the field intensity of the resonant tunneling modes is enhanced by one order of magnitude when the ratio of thicknesses of the two single-negative layers increases by 0.4.This property will be applied widely in the field of nonlinearity optics.With the increase of the ratio of thicknesses of the two single-negative layers,the electric field of the tunneling modes becomes more localized,and the full width at half maximum of the tunneling modes becomes narrower.Besides,the pair of tunneling modes is insensitive to incident angle and thickness fluctuation.These properties will be used for the design of tunable omnidirectional double-channel filter with high quality factor.
基金supported by the Key Academic Discipline Project of China University of Mining and Technology(Grant No.2022WLXK06)the National Natural Science Foundation of China(Grant Nos.11874274,12004425,and 12274315)+3 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20200630)the Qing Lan Projecta Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Basic Research Program of Xuzhou(Grant No.KC22016)。
文摘Many works on topological insulators have focused on periodic lattice systems,where short-and long-range order is considered.Here we construct a two-dimensional amorphous photonic crystal with short-range order and a controllable level of long-range order and experimentally investigate the transport of topological edge states in this amorphous system.We demonstrate that topology properties remain constant with unidirectional edge state propagation,immune to specific disorder strength.The partition phenomena of edge states are also observed at the intersection of four topological channels in microwave experiments.This proposed amorphous configuration provides new opportunities to explore the relationship between short-range order and topology and may alleviate the fabrication difficulties of topological optical devices for practical applications.
基金Project supported by the "985 project" (Grant Nos.98503-008006 and 98503-008017)the "211 project" of Ministry of Education of Chinathe Fundamental Research Funds for the Central Universities of China
文摘On the basis of two-dimensional amorphous photonic materials, we have designed a novel waveguide by inserting thinner cylindrical inclusions in the centre of basic hexagonal units of the amorphous structure along a given path. This waveguide in amorphous structure is similar to the coupled resonator optical waveguides in periodic photonic crystals. The transmission of this waveguide for S-polarized waves is investigated by a multiple-scattering method. Compared with the conventional waveguide by removing a line of cells from amorphous photonic materials, the guiding properties of this waveguide, including the transmissivity and bandwidth, are improved significantly. Then we study the effect of various types of positional disorder on the functionality of this device. Our results show that the waveguide performance is quite sensitive to the disorder located on the boundary layer of the waveguide, but robust against the disorder in the other area in amorphous structure except the waveguide border. This disorder effect in amorphous photonic materials is similar to the case in periodic photonic crystals.
基金supported by International Science&Technology Cooperation Program of China(2015DFG12630)Program for Liaoning Excellent Talents in University(LJQ2015021)
文摘The observation of topological edge states(TESs) revolutionized our understanding of scattering and propagation of electromagnetic(EM) waves. Supported by topological robustness, the TES at the interface between trivial and non-trivial insulators was not reflected from the structural disorders and imperfections. Recently topological photonic crystals(PhCs) were demonstrated to obtain remarkable one-way propagation of the TES, having the advantages of lossless propagation, dense integration, and high fabrication tolerance over conventional PhCs. Nevertheless, the lack of reversible switching of TES possesses significant limitations in helicity/spin filtering and tunable photonic devices. We proposed a topological PhC based on a prototypical phase-change material, Ge2 Sb2 Te5(GST225) to solve the problem. We find that at a particular frequency, the TES within the structure can be reversibly switched between "on"and "off" by transiting the GST225 structural state between amorphous and crystalline. Moreover, the topology of the PhC was maintained since the tuning of TES was achieved by varying the refractive index of GST225 instead of the structural geometry. This provides a continuous change of the spectral position of the photonic bandgap and TES by gradually crystallising the GST225. We show that the phase change of GST225 from amorphous to crystalline and vice versa can be engineered in nanoseconds. Our proof of concept may offer a platform for dynamically tuning the TESs that might otherwise be challenging to attain in photonic systems. We expect it to have potential applications for photonic devices in topological optical circuits and scatter-free one-way light propagation.
文摘A numerical analysis on dual core photonic crystal fiber (DC-PCF) based surface plasmon resonance (SPR) refractive index sensor is presented. The guiding parameters and required sensing performances are examined with finite element method (FEM) based software under MATLAB environment. According to simulation, it is warranted that the proposed refractive index sensor offers the maximum amplitude sensitivity of 554.9 refractive index unit (RIU-1) and 636.5 RIU 1 with the maximum wavelength sensitivity of 5800nm/RIU and 11 500nm/RIU, and the sensor resolutions of 1.72 ×10^-5RIU and 8.7× 10^-6 RIU, at analyte refractive index (RI) of 1.40 for x- and y-polarized modes, respectively. As the sensing performance in different wavelength ranges is quite high, the proposed sensor can be used in simultaneous detection for different wavelength ranges. Therefore, the proposed device is of a suitable platform for detecting biological, chemical, biochemical, and organic chemical analytes.
基金supported by the Senior Talent Foundation of Jiangsu University(06JDG062)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(08KJB510001)+2 种基金Qianjiang Talent Project of Zhejiang Province(2007R10015)the Science Foundation of Ningbo(2008A610001)the National Natural Science Foundation of China(10574058 and 50735001)
文摘A novel broadband directional coupler based on an asymmetric dual-core photonic crystal fibet(PCF)is proposed.The asymmetry in the fiher is introduced by the enlargement of one air-hole in dual-core PCF.Numerical investigation demonstrate that broadband directional coupling with spectral width as large as 370 nm and polarization-dependent loss and uniformity lower than 0.2 and 0.5 dB,respectively,can be achieved.In addition,the proposed fiber shows large tolerance to the variation of the fiber parameters.In particular,the fiber length allows at least 10%derivation from the proposed fiber length of 7.7 mm.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60345008, 60377011 and 60537010)the China "863" Program (Grant No. 2005AA311030)
文摘The novel material of photonic crystal makes it possible to control a photon, and the photonic integration will have breakthrough progress due to the application of photonic crystal. It is based on the photonic crystal device that the photonic crystal integration could be realized. Therefore, we should first investigate photonic crystal devices based on the active and the passive semiconductor materials, which may have great potential application in photonic integration. The most practical and important method to fabricate two-dimensional photonic crystal is the micro-manufacture method. In this paper, we summarize and evaluate the fabrication methods of two-dimensional photonic crystal in near-infrared region, including electron beam lithography, selection of mask, dry etching, and some works of ours. This will be beneficial to the study of the photonic crystal in China.
文摘In this work, the influences of dielectrics with light absorption on the photonic bandgaps (PBGs) of porous alumina photonic crystals (PCs) were studied. Transmittance spectra of porous alumina PCs adsorbing ethanol showed that all the PBGs positions red-shifted; however, the transmittance of the PBG bottom showed different trends when the PBGs were located in different wavelength regions. In the near infrared region, liquid ethanol has strong light absorption, and, with the increase in adsorption, the PBG bottom transmittance of porous alumina PCs first increased and then decreased. However, in the visible light region, liquid ethanol has little light absorption, and thus, with the increase in adsorption, the PBG bottom transmittance of porous alumina PCs increased gradually all the time. Simulated results were consistent with the experimental results. The capillary condensation of organic vapors in the pores of porous alumina accounted for the change in the PBG bottom transmittance. The non- negligible light absorption of the organic vapors was the cause of the decrease in the transmittance. The results for porous alumina PC adsorbing methanol, acetone, and toluene further confirmed the influences of light absorption on the PBG bottomed transmittance.
文摘This Letter introduces the design and simulation of a microstrip-line-based electro-optic (EO) polymer optical phase modulator (PM) that is further enhanced by the addition of photonic crystal (PhC) structures that are in close proximity to the optical core. The slow-wave PhC structure is designed for two different material configurations and placed in the modulator as a superstrate to the optical core; simulation results are depicted for both 1D and 2D PhC structures. The PM characteristics are modeled using a combination of the finite element method and the optical beam propagation method in both the RF and optical domains, respectively. The phase-shift simulation results show a factor of 1.7 increase in an effective EO coefficient (120 pm/V) while maintaining a broadband bandwidth of 40 GHz.
文摘We design an ultra-compact water temperature sensor by using the photonic crystal technology on the InP substrate at the 1.55-μm wavelength window. The photonic crystal consists of rods in a hexagonal lattice and a polymethyl methacrylate (PMMA) background. By using the plane wave expansion (PWE) method, the lattice constant and radius of rods are obtained, 520nm and 80.6nm, respectively. With a nanocavity placed in the waveguide, a resonance peak is observed at the 1.55-μm wavelength window. Any change of the water temperature inside the nanocavity results in the shift of the resonance wavelength. Our simulations show a shift of about 11 nm for a temperature change of 22.5 ℃. The resonance wavelength has a linear relation with the water temperature.
文摘This article designs a novel type of non-bravais lattice photonic crystal fiber.To form the nesting complexperiod with positive and negative refractive index materials respectively,a cylinder with the same radius and negative refractive index is introduced into the center of each lattice unit cell in the traditional square lattice air-holes photonic crystal fiber.The photonic band-gap of the photonic crystal fiber is calculated numerically by the plane wave expansion method.The result shows that compared with the traditional square photonic band-gap fiber(PBGF),when R=Λis 0.35,the refractive index of the substrate,airhole,and medium-column are 1.30,1.0,and–1:0,respectively.This new PBGF can transmit signal by the photonic band-gap effect.When the lattice constantΛvaries from 1:5μm to 3:0μm,the range of the wavelength ranges from 880 nm to 2300 nm.