Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile...Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O.展开更多
As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants....As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.To improve the performance of solid composite propellant,it is necessary to take measures to modify the thermal decomposition behavior of AP.In recent years,transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraordinary catalytic activity.In this review,we highlight strategies to enhance the thermal decomposition of AP by tuning morphology,varying the types of metal ion,and coupling with carbon analogue.The enhanced catalytic performance can be ascribed to synergistic effect,increased surface area,more exposed active sites,and accelerated electron transportation and so on.The mechanism of AP decomposition mixed with catalyst has also been briefly summarized.Finally,a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing.展开更多
The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under id...The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under identical calcination conditions, supported gold catalysts were prepared on a wide variety of MOx supports, and the temperature for 50%conversion was measured to qualita‐tively evaluate the catalytic activities of these simple MOx and supported Au catalysts. Furthermore, the difference in these temperatures for the simple MOx compared to the supported Au catalysts is plotted against the metal–oxygen binding energies of the support MOx. A clear volcano‐like correla‐tion between the temperature difference and the metal–oxygen binding energies is observed. This correlation suggests that the use of MOx with appropriate metal–oxygen binding energies (300–500 kJ/atom O) greatly improves the catalytic activity of MOx by the deposition of Au NPs.展开更多
Direct oxidative coupling of an alcohol and amine,with air or molecular oxygen as the oxygen source,is an environmentally friendly method for imine synthesis.We developed an Fe catalyst supported on mesoporous carbon...Direct oxidative coupling of an alcohol and amine,with air or molecular oxygen as the oxygen source,is an environmentally friendly method for imine synthesis.We developed an Fe catalyst supported on mesoporous carbon(denoted by FeOx/HCMK-3) for this reaction with excellent activity and recyclability.FeOx/HCMK-3 was prepared by impregnating HNO3-treated mesoporous carbon(CMK-3) with iron nitrate solution.The highly dispersed FeOx species give FeOx/HCMK-3 high reducibility and are responsible for the high catalytic performance.Imine synthesis over FeOx/HCMK-3 follows a redox mechanism.The oxygen species in FeOx/HCMK-3 participate in the reaction and are then regenerated by oxidation with molecular O2.The reaction involves two consecutive steps:oxidative dehydrogenation of an alcohol to an aldehyde and coupling of the aldehyde with an amine to give an imine.Oxidative dehydrogenation of the alcohol is the rate-determining step in the reaction.展开更多
A series of mesoporous phosphotungstic acid/alumina composites (HPW/Al_2O_3) with various HPW contents were synthesized by evaporation-induced self-assembly method. These composites were characterized by nitrogen ad...A series of mesoporous phosphotungstic acid/alumina composites (HPW/Al_2O_3) with various HPW contents were synthesized by evaporation-induced self-assembly method. These composites were characterized by nitrogen adsorption-desorption, TEM, FTIR, and UV-vis, and were tested as catalysts in oxidation desulfurization of model fuel composed of dibenzothiophene (DBT) and hydrocarbon, using H202 as the oxidant. These composites exhibited high activity in catalytic oxidation of DBT in model fuel and good reusing ability. The best performance was achieved by using the mesoporous HPW/Al_2O_3 with 15wt% HPW content, which resulted in a DBT conversion of 98% after 2 h reaction at 343 K, and it did not show significant activity degradation after 3 recycles. Characterization results showed that the mesoporous structure of alumina and the Keggin structure of HPW were preserved in the formed composite. These results suggested that HPW/ Al_2O_3 could be a promising catalyst in oxidative desulfurization process.展开更多
Ti-containing mesoporous silica materials(Ti-MSs) with isolated tetrahedrally coordinated Ti species have been widely applied in bulk molecular catalysis. Herein, Ti-MSs were synthesized using anionic surfactant SDS a...Ti-containing mesoporous silica materials(Ti-MSs) with isolated tetrahedrally coordinated Ti species have been widely applied in bulk molecular catalysis. Herein, Ti-MSs were synthesized using anionic surfactant SDS as the co-template. The SDS molecular assembled structures can interact with silica species through the interface hydrogen bonds leading to the formation of mesoporous silica structure with compact Ti-O bonds, lower hydrophilicity and low template cost. The influence of adding SDS as the co-template on the oxidation of styrene with aqueous H_2O_2 as the oxidant was investigated. Ti-MSs using SDS as the co-template showed better catalytic performance as compared with mesoporous titanium silicate synthesized with CTAB serving as the sole template. Moreover, the Ti-MSs synthesized at a Ti/Si ratio of 0.005 demonstrated an optimized performance for styrene oxidation with styrene conversion improved by 14.8%, benzaldehyde selectivity improved by 13.7% and styrene oxide selectivity improved by 9.2% when the reaction time was 6 h.展开更多
The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Tran...The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Transition metal catalysts offer a cost-effective alternative to precious metals for catalyzing HMF oxidation, with transition bimetallic catalysts emerging as particularly promising candidates. In this review, we delve into the intricate reaction pathways and electrochemical mechanisms underlying HMF oxidation, emphasizing the pivotal role of transition bimetallic catalysts in enhancing catalytic efficiency. Subsequently, various types of transition bimetallic catalysts are explored, detailing their synthesis methods and structural modulation strategies. By elucidating the mechanisms behind catalyst modification and performance enhancement, this review sets the stage for upcoming advancements in the field, ultimately advancing the electrochemical HMF conversion and facilitating the transition towards sustainable chemical production.展开更多
Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalys...Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.展开更多
Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TM...Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.展开更多
Metal(Al,Ti,Zr)triflate grafted mesoporous SBA‐15(AlTf/S,TiTf/S,ZrTf/S)samples were synthesizedas inexpensive solid acid materials by a simple one‐pot‐two‐step synthesis methodology.These materials were characteri...Metal(Al,Ti,Zr)triflate grafted mesoporous SBA‐15(AlTf/S,TiTf/S,ZrTf/S)samples were synthesizedas inexpensive solid acid materials by a simple one‐pot‐two‐step synthesis methodology.These materials were characterized by X‐ray diffraction,N2‐sorption,thermogravimetric analysis,Fourier transform infrared spectroscopy(FT‐IR),in‐situ pyridine FT‐IR spectroscopy,and elementalanalysis.ZrTf/S was found to be a highly efficient and reusable solid acid catalyst for ring opening ofepoxides with amines and alcohols and producedβ‐amino alcohols andβ‐alkoxy alcohols respectivelyunder ambient reaction conditions.The ZrTf/S catalyst showed the highest activity,whichwas attributed to its high acidity compared with that of the Ti and Al containing samples.展开更多
Recently,a one-pot self-assembly method was proposed for the synthesis of mesoporous Al2O3 and MOx-Al2O3 composite materials.However,few attempts have been made to use mesoporous MOx-Al2O3 composites to support metal ...Recently,a one-pot self-assembly method was proposed for the synthesis of mesoporous Al2O3 and MOx-Al2O3 composite materials.However,few attempts have been made to use mesoporous MOx-Al2O3 composites to support metal oxides for catalysis.In the present work,mesoporous MOx-Al2O3(M = Mn,Fe,Co,Ni,Cu,Ba)materials were prepared by a one-pot self-assembly method using Pluronic P123 as a structure-directing agent.The obtained mesoporous materials were loaded with Rh2O3 nanoparticles via impregnation with Rh(NO3)3 followed by calcination in air at 500°C.The resulting catalysts were characterized by X-ray diffraction,N2 adsorption-desorption measurements,transmission electron microscopy,inductively coupled plasma optical emission spectrometry,X-ray photoelectron spectroscopy,and their catalytic activity and stability for CO oxidation and N2O decomposition were tested.The Rh2O3 nanoparticles were found to be on the order of1 nm in size and were highly dispersed on the high surface area mesoporous MOx-Al2O3 supports.A number of the Rh2O3/mesoporous MOx-Al2O3 catalysts exhibited higher catalytic activity than the Rh2O3/mesoporous Al2O3 prepared for comparison.展开更多
The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was eva...The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was evaluated under simulative conditions for the preferential oxidation of CO (CO-PROX) from the hydrogen-rich gas streams produced by reforming gas, and the performances of catalysts were investigated by XRD and TPR. The results showed that the activity temperature of the modified catalysts Ru-K20/Al2O3 and Ru-La2O3/Al2O3 were lowered approximately 30℃ compared with pure Ru/Al2O3, and the activity temperature range was widened. The conversion of CO on Ru-K20/Al2O3 and Ru-La2O3/Al2O3 was above 99% at 140-160℃, suitable to remove CO in a hydrogen-rich gas and the selectivity of Ru-La2O3/Al2O3 was higher than that of Ru-K2O/Al2O3in the active temperature range. Slight methanation reaction was detected at 220℃ and above.展开更多
This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It...This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It includes the description of the main types of metal oxide catalysts, of their various preparation procedures and of the main reactions catalysed by them (acid-base type, selective and total oxidations, bi-functional catalysis, photocatalysis, biomass treatments, environmental catalysis and some of the numerous industrial applications). Challenges and prospectives are also discussed.展开更多
Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 sele...Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.展开更多
Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidat...Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.展开更多
As a carbon-free energy carrier,hydrogen has become the pivot for future clean energy,while efficient hydrogen production and combustion still require precious metal-based catalysts.Single-atom catalysts(SACs)with hig...As a carbon-free energy carrier,hydrogen has become the pivot for future clean energy,while efficient hydrogen production and combustion still require precious metal-based catalysts.Single-atom catalysts(SACs)with high atomic utilization open up a desirable perspective for the scale applications of precious metals,but the general and facile preparation of various precious metal-based SACs remains challenging.Herein,a general movable printing method has been developed to synthesize various precious metal-based SACs,such as Pd,Pt,Rh,Ir,and Ru,and the features of highly dispersed single atoms with nitrogen coordination have been identified by comprehensive characterizations.More importantly,the synthesized Pt-and Ru-based SACs exhibit much higher activities than their corresponding nanoparticle counterparts for hydrogen oxidation reaction and hydrogen evolution reaction(HER).In addition,the Pd-based SAC delivers an excellent activity for photocatalytic hydrogen evolution.Especially for the superior mass activity of Ru-based SACs toward HER,density functional theory calculations confirmed that the adsorption of the hydrogen atom has a significant effect on the spin state and electronic structure of the catalysts.展开更多
The organic compound 2,5-furandicarboxylic acid(FDCA) has been identified by the US Department of Energy(DOE) as a valuable platform chemical for a wide range of industrial applications. Currently, the most popula...The organic compound 2,5-furandicarboxylic acid(FDCA) has been identified by the US Department of Energy(DOE) as a valuable platform chemical for a wide range of industrial applications. Currently, the most popular route for FDCA synthesis is reported to be the oxidation of 5-hydroxymethylfurfural(HMF)by O_2 over the catalysis of noble metals(e.g., Au, Pt, Ru, and Pd). However, the high costs of noble metal catalysts remain a major barrier for producing FDCA at an industrial scale. Herein, we report a transition metal-free synthesis strategy for the oxidation of HMF to FDCA under O_2 or ambient air. A simple but unprecedented process for the aerobic oxidation of HMF was carried out in organic solvents using only bases as the promoters. According to the high performance liquid chromatography(HPLC) analysis, excellent product yield(91%) was obtained in the presence of NaOH in dimethylformamide(DMF) at room temperature(25 ℃). A plausible mechanism for the NaOH-promoted aerobic oxidation of HMF in DMF is also outlined in this paper. After the reaction, the sodium salt of FDCA particles were dispersed in the reaction mixture, making it possible for product separation and solvent reuse. The new HMF oxidation approach is expected to be a practical alternative to current ones, which depend on the use of noble metal catalysts.展开更多
Water oxidation, as a mandatory reaction of solar fuels conversion systems, requires the use of light absorbers with electronic properties that are well matched with those of the multi-electron catalyst in order to ac...Water oxidation, as a mandatory reaction of solar fuels conversion systems, requires the use of light absorbers with electronic properties that are well matched with those of the multi-electron catalyst in order to achieve high efficiency. Molecular light absorbers offer flexibility in fine tuning of orbital energetics,and metal oxide nanoparticles have emerged as robust oxygen evolving catalysts. Hence, these material choices offer a promising approach for the development of photocatalytic systems for water oxidation.However, efficient charge transfer coupling of molecular light absorbers and metal oxide nanoparticle catalysts has proven a challenge. Recent new approaches toward the efficient coupling of these components based on synthetic design improvements combined with direct spectroscopic observation and kinetic evaluation of charge transfer processes are discussed.展开更多
Mesoporous TiO2 (m-TiO2) nanoparticles were used to prepare the porous film electrodes for dye-sensitized solar cells, and a second metal oxide (MgO, ZnO, A1203, or NiO) modifi- cation was carried out by dipping t...Mesoporous TiO2 (m-TiO2) nanoparticles were used to prepare the porous film electrodes for dye-sensitized solar cells, and a second metal oxide (MgO, ZnO, A1203, or NiO) modifi- cation was carried out by dipping the m-TiO2 electrode into their respective nitrate solution followed by annealing at 500 ℃. Experimental results indicated that the above second metal oxide modifications on m-TiO2 electrode are shown in all cases to act as barrier layer for the interracial charge transfer processes, but film electron transport and interfacial charge recombination characteristics under applied bias voltage were dependent significantly on the existing states and kinds of these second metal oxides. Those changes based on sec- ond metal oxide modifications showed good correlation with the current-voltage analyses of dye-sensitized solar cell, and all modifications were found to increase the open-circuit photo- voltage in various degrees, while the MgO, ZnO, and NiO modifications result in 23%, 13%, and 6% improvement in cell conversion efficiency, respectively. The above observations indi- cate that controlling the charge transport and recombination is very important to improve the photovoltaic performance of TiO2-based solar cell.展开更多
基金supported by the National Natural Science Committee of China-Liaoning Provincial People's Government Joint Fund(U1908204)National Natural Science Foundation of China(21876006,21976009,and 21961160743)+2 种基金Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions(IDHT20190503)Natural Science Foundation of Beijing Municipal Commission of Education(KM201710005004)Development Program for the Youth Outstanding-Notch Talent of Beijing Municipal Commission of Education(CIT&TCD201904019)。
文摘Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O.
基金This work was financially supported by the Science and Technology project of Jiangsu province(BN2015021,XZ-SZ201819).
文摘As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.To improve the performance of solid composite propellant,it is necessary to take measures to modify the thermal decomposition behavior of AP.In recent years,transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraordinary catalytic activity.In this review,we highlight strategies to enhance the thermal decomposition of AP by tuning morphology,varying the types of metal ion,and coupling with carbon analogue.The enhanced catalytic performance can be ascribed to synergistic effect,increased surface area,more exposed active sites,and accelerated electron transportation and so on.The mechanism of AP decomposition mixed with catalyst has also been briefly summarized.Finally,a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing.
文摘The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under identical calcination conditions, supported gold catalysts were prepared on a wide variety of MOx supports, and the temperature for 50%conversion was measured to qualita‐tively evaluate the catalytic activities of these simple MOx and supported Au catalysts. Furthermore, the difference in these temperatures for the simple MOx compared to the supported Au catalysts is plotted against the metal–oxygen binding energies of the support MOx. A clear volcano‐like correla‐tion between the temperature difference and the metal–oxygen binding energies is observed. This correlation suggests that the use of MOx with appropriate metal–oxygen binding energies (300–500 kJ/atom O) greatly improves the catalytic activity of MOx by the deposition of Au NPs.
基金supported by the National Natural Science Foundation of China(21473073,21473074)the "13th Five-Year" Science and Technology Research of the Education Department of Jilin Province(2016403)~~
文摘Direct oxidative coupling of an alcohol and amine,with air or molecular oxygen as the oxygen source,is an environmentally friendly method for imine synthesis.We developed an Fe catalyst supported on mesoporous carbon(denoted by FeOx/HCMK-3) for this reaction with excellent activity and recyclability.FeOx/HCMK-3 was prepared by impregnating HNO3-treated mesoporous carbon(CMK-3) with iron nitrate solution.The highly dispersed FeOx species give FeOx/HCMK-3 high reducibility and are responsible for the high catalytic performance.Imine synthesis over FeOx/HCMK-3 follows a redox mechanism.The oxygen species in FeOx/HCMK-3 participate in the reaction and are then regenerated by oxidation with molecular O2.The reaction involves two consecutive steps:oxidative dehydrogenation of an alcohol to an aldehyde and coupling of the aldehyde with an amine to give an imine.Oxidative dehydrogenation of the alcohol is the rate-determining step in the reaction.
基金Funded by the National Natural Science Foundation of China(21106008)the PetroChina Innovation Foundation(2013D-5006-0405)the Natural Science Foundation of Hubei Province(2011CDB007)
文摘A series of mesoporous phosphotungstic acid/alumina composites (HPW/Al_2O_3) with various HPW contents were synthesized by evaporation-induced self-assembly method. These composites were characterized by nitrogen adsorption-desorption, TEM, FTIR, and UV-vis, and were tested as catalysts in oxidation desulfurization of model fuel composed of dibenzothiophene (DBT) and hydrocarbon, using H202 as the oxidant. These composites exhibited high activity in catalytic oxidation of DBT in model fuel and good reusing ability. The best performance was achieved by using the mesoporous HPW/Al_2O_3 with 15wt% HPW content, which resulted in a DBT conversion of 98% after 2 h reaction at 343 K, and it did not show significant activity degradation after 3 recycles. Characterization results showed that the mesoporous structure of alumina and the Keggin structure of HPW were preserved in the formed composite. These results suggested that HPW/ Al_2O_3 could be a promising catalyst in oxidative desulfurization process.
基金financially supported by the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No. 2014RCJJ017)
文摘Ti-containing mesoporous silica materials(Ti-MSs) with isolated tetrahedrally coordinated Ti species have been widely applied in bulk molecular catalysis. Herein, Ti-MSs were synthesized using anionic surfactant SDS as the co-template. The SDS molecular assembled structures can interact with silica species through the interface hydrogen bonds leading to the formation of mesoporous silica structure with compact Ti-O bonds, lower hydrophilicity and low template cost. The influence of adding SDS as the co-template on the oxidation of styrene with aqueous H_2O_2 as the oxidant was investigated. Ti-MSs using SDS as the co-template showed better catalytic performance as compared with mesoporous titanium silicate synthesized with CTAB serving as the sole template. Moreover, the Ti-MSs synthesized at a Ti/Si ratio of 0.005 demonstrated an optimized performance for styrene oxidation with styrene conversion improved by 14.8%, benzaldehyde selectivity improved by 13.7% and styrene oxide selectivity improved by 9.2% when the reaction time was 6 h.
基金Hubei Provincial Natural Science Foundation of China (2023AFB0049)Scientific Research Fund Project of Wuhan Institute of Technology (K202232 and K2023028)Graduate Education Innovation Fund of Wuhan Institute of Technology (CX2023091)。
文摘The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Transition metal catalysts offer a cost-effective alternative to precious metals for catalyzing HMF oxidation, with transition bimetallic catalysts emerging as particularly promising candidates. In this review, we delve into the intricate reaction pathways and electrochemical mechanisms underlying HMF oxidation, emphasizing the pivotal role of transition bimetallic catalysts in enhancing catalytic efficiency. Subsequently, various types of transition bimetallic catalysts are explored, detailing their synthesis methods and structural modulation strategies. By elucidating the mechanisms behind catalyst modification and performance enhancement, this review sets the stage for upcoming advancements in the field, ultimately advancing the electrochemical HMF conversion and facilitating the transition towards sustainable chemical production.
基金supported by the National High Technology Research and Development Program (863 Program,2015AA034603)the National Natural Science Foundation of China (21377008,201077007,20973017)+1 种基金Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal InstitutionsScientific Research Base Construction-Science and Technology Creation Platform National Materials Research Base Construction~~
文摘Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.
基金Science and Technology Commission of Shanghai Municipality(21ZR1472900,22ZR1471600)。
文摘Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.
基金supported by the CAS President’s International Fellowship Initiative (2016PT028)the National Natural Science Foundation of China (21273225 and 21403219)~~
文摘Metal(Al,Ti,Zr)triflate grafted mesoporous SBA‐15(AlTf/S,TiTf/S,ZrTf/S)samples were synthesizedas inexpensive solid acid materials by a simple one‐pot‐two‐step synthesis methodology.These materials were characterized by X‐ray diffraction,N2‐sorption,thermogravimetric analysis,Fourier transform infrared spectroscopy(FT‐IR),in‐situ pyridine FT‐IR spectroscopy,and elementalanalysis.ZrTf/S was found to be a highly efficient and reusable solid acid catalyst for ring opening ofepoxides with amines and alcohols and producedβ‐amino alcohols andβ‐alkoxy alcohols respectivelyunder ambient reaction conditions.The ZrTf/S catalyst showed the highest activity,whichwas attributed to its high acidity compared with that of the Ti and Al containing samples.
基金supported by the National Natural Science Foundation of China (21177028)~~国家自然科学基金(21177028)
文摘Recently,a one-pot self-assembly method was proposed for the synthesis of mesoporous Al2O3 and MOx-Al2O3 composite materials.However,few attempts have been made to use mesoporous MOx-Al2O3 composites to support metal oxides for catalysis.In the present work,mesoporous MOx-Al2O3(M = Mn,Fe,Co,Ni,Cu,Ba)materials were prepared by a one-pot self-assembly method using Pluronic P123 as a structure-directing agent.The obtained mesoporous materials were loaded with Rh2O3 nanoparticles via impregnation with Rh(NO3)3 followed by calcination in air at 500°C.The resulting catalysts were characterized by X-ray diffraction,N2 adsorption-desorption measurements,transmission electron microscopy,inductively coupled plasma optical emission spectrometry,X-ray photoelectron spectroscopy,and their catalytic activity and stability for CO oxidation and N2O decomposition were tested.The Rh2O3 nanoparticles were found to be on the order of1 nm in size and were highly dispersed on the high surface area mesoporous MOx-Al2O3 supports.A number of the Rh2O3/mesoporous MOx-Al2O3 catalysts exhibited higher catalytic activity than the Rh2O3/mesoporous Al2O3 prepared for comparison.
基金the National Natural Science Foundation of China(20576023)the Guangdong Province Natural Science Foundation (06025660)
文摘The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was evaluated under simulative conditions for the preferential oxidation of CO (CO-PROX) from the hydrogen-rich gas streams produced by reforming gas, and the performances of catalysts were investigated by XRD and TPR. The results showed that the activity temperature of the modified catalysts Ru-K20/Al2O3 and Ru-La2O3/Al2O3 were lowered approximately 30℃ compared with pure Ru/Al2O3, and the activity temperature range was widened. The conversion of CO on Ru-K20/Al2O3 and Ru-La2O3/Al2O3 was above 99% at 140-160℃, suitable to remove CO in a hydrogen-rich gas and the selectivity of Ru-La2O3/Al2O3 was higher than that of Ru-K2O/Al2O3in the active temperature range. Slight methanation reaction was detected at 220℃ and above.
文摘This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It includes the description of the main types of metal oxide catalysts, of their various preparation procedures and of the main reactions catalysed by them (acid-base type, selective and total oxidations, bi-functional catalysis, photocatalysis, biomass treatments, environmental catalysis and some of the numerous industrial applications). Challenges and prospectives are also discussed.
文摘Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.
文摘Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.
基金National Natural Science Foundation of China,Grant/Award Numbers:62105083,22109034,22109035,52164028Start-up Research Foundation of Hainan University,Grant/Award Numbers:KYQD(ZR)-20008,KYQD(ZR)-20082,KYQD(ZR)-20083,KYQD(ZR)-20084,KYQD(ZR)-21065,KYQD(ZR)-21124,KYQD(ZR)-21125+4 种基金Basic and Applied Basic Research Foundation of Guangdong Province,Grant/Award Number:2019A1515110558Hainan Provincial Postdoctoral Science Foundation,Grant/Award Number:RZ2100007123Hainan Province Science and Technology Special Fund,Grant/Award Numbers:ZDYF2020037,ZDYF2020207Hainan Provincial Natural Science Foundation,Grant/Award Numbers:222MS009,222RC548The specific research fund of The Innovation Platform for Academicians of Hainan Province。
文摘As a carbon-free energy carrier,hydrogen has become the pivot for future clean energy,while efficient hydrogen production and combustion still require precious metal-based catalysts.Single-atom catalysts(SACs)with high atomic utilization open up a desirable perspective for the scale applications of precious metals,but the general and facile preparation of various precious metal-based SACs remains challenging.Herein,a general movable printing method has been developed to synthesize various precious metal-based SACs,such as Pd,Pt,Rh,Ir,and Ru,and the features of highly dispersed single atoms with nitrogen coordination have been identified by comprehensive characterizations.More importantly,the synthesized Pt-and Ru-based SACs exhibit much higher activities than their corresponding nanoparticle counterparts for hydrogen oxidation reaction and hydrogen evolution reaction(HER).In addition,the Pd-based SAC delivers an excellent activity for photocatalytic hydrogen evolution.Especially for the superior mass activity of Ru-based SACs toward HER,density functional theory calculations confirmed that the adsorption of the hydrogen atom has a significant effect on the spin state and electronic structure of the catalysts.
基金This work was supported by the SEEDS grant from the Ohio Agricultural Research and Development Center(OARDC)of the Ohio State University,Ohio,USA[grant number 2016-105].
文摘The organic compound 2,5-furandicarboxylic acid(FDCA) has been identified by the US Department of Energy(DOE) as a valuable platform chemical for a wide range of industrial applications. Currently, the most popular route for FDCA synthesis is reported to be the oxidation of 5-hydroxymethylfurfural(HMF)by O_2 over the catalysis of noble metals(e.g., Au, Pt, Ru, and Pd). However, the high costs of noble metal catalysts remain a major barrier for producing FDCA at an industrial scale. Herein, we report a transition metal-free synthesis strategy for the oxidation of HMF to FDCA under O_2 or ambient air. A simple but unprecedented process for the aerobic oxidation of HMF was carried out in organic solvents using only bases as the promoters. According to the high performance liquid chromatography(HPLC) analysis, excellent product yield(91%) was obtained in the presence of NaOH in dimethylformamide(DMF) at room temperature(25 ℃). A plausible mechanism for the NaOH-promoted aerobic oxidation of HMF in DMF is also outlined in this paper. After the reaction, the sodium salt of FDCA particles were dispersed in the reaction mixture, making it possible for product separation and solvent reuse. The new HMF oxidation approach is expected to be a practical alternative to current ones, which depend on the use of noble metal catalysts.
基金supported by the Director,Office of Science,Office of Basic Energy Sciences,Division of Chemical,Geological and Biosciences of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231
文摘Water oxidation, as a mandatory reaction of solar fuels conversion systems, requires the use of light absorbers with electronic properties that are well matched with those of the multi-electron catalyst in order to achieve high efficiency. Molecular light absorbers offer flexibility in fine tuning of orbital energetics,and metal oxide nanoparticles have emerged as robust oxygen evolving catalysts. Hence, these material choices offer a promising approach for the development of photocatalytic systems for water oxidation.However, efficient charge transfer coupling of molecular light absorbers and metal oxide nanoparticle catalysts has proven a challenge. Recent new approaches toward the efficient coupling of these components based on synthetic design improvements combined with direct spectroscopic observation and kinetic evaluation of charge transfer processes are discussed.
文摘Mesoporous TiO2 (m-TiO2) nanoparticles were used to prepare the porous film electrodes for dye-sensitized solar cells, and a second metal oxide (MgO, ZnO, A1203, or NiO) modifi- cation was carried out by dipping the m-TiO2 electrode into their respective nitrate solution followed by annealing at 500 ℃. Experimental results indicated that the above second metal oxide modifications on m-TiO2 electrode are shown in all cases to act as barrier layer for the interracial charge transfer processes, but film electron transport and interfacial charge recombination characteristics under applied bias voltage were dependent significantly on the existing states and kinds of these second metal oxides. Those changes based on sec- ond metal oxide modifications showed good correlation with the current-voltage analyses of dye-sensitized solar cell, and all modifications were found to increase the open-circuit photo- voltage in various degrees, while the MgO, ZnO, and NiO modifications result in 23%, 13%, and 6% improvement in cell conversion efficiency, respectively. The above observations indi- cate that controlling the charge transport and recombination is very important to improve the photovoltaic performance of TiO2-based solar cell.