Utilizing observations by the Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)instrument,we quantitatively assessed the dawn-dusk asymmetry in temperature disturbances within the high-latitude mes...Utilizing observations by the Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)instrument,we quantitatively assessed the dawn-dusk asymmetry in temperature disturbances within the high-latitude mesosphere and lower thermosphere(MLT)during the main phase of geomagnetic storms in this study.An analysis of five geomagnetic superstorm events indicated that during the main phase,negative temperature disturbances were more prevalent on the dawn side than on the dusk side in the high-latitude MLT region.Results of a statistical analysis of 54 geomagnetic storm events also revealed a notable disparity in temperature disturbances between the dawn and dusk sides.At high latitudes,38.2%of the observational points on the dawn side exhibited negative temperature disturbances(less than−5 K),whereas on the dusk side,this percentage was only 29.5%.In contrast,at mid-latitudes,these proportions were 34.1%and 36.5%,respectively,showing no significant difference.We also conducted a statistical analysis of temperature disturbances at different altitudes,which revealed an increase in the proportion of warming disturbances with altitude.Conversely,the proportion of cooling disturbances initially rose with altitude,reaching a peak around 105 km,and subsequently decreased.These temperature disturbance differences could be explained by the day-night asymmetry in vertical wind disturbances during storm conditions.展开更多
Fuke (19.5°N, 109.1°E) meteor radar is the first radar of the low latitudes of China, which is used to detect the wind in the meso- sphere and lower thermosphere. In this paper, by using the wind data near t...Fuke (19.5°N, 109.1°E) meteor radar is the first radar of the low latitudes of China, which is used to detect the wind in the meso- sphere and lower thermosphere. In this paper, by using the wind data near three months (1 February-20 April, 2009), we first present the variation of the atmospheric diurnal tide, semidiurnal tide and mean wind in the height range 80-100 km over the low latitudes of China. The results from our analysis are summarized below. During spring months, there are quite strong tides in the mesopause region of Fuke. The diurnal tidal amplitude is significantly larger than the amplitude of semidiurnal tide, and the maximum amplitude (about 100 m/s) of diurnal tide appear in the meridional wind. The vertical phases of both diurnal tide and semidiurnal tide propagate downward. In addition, the observed tides are compared with the linear tide model (Global Scale Wave Model, GSWM02), and the results show that Fuke diurnal tide agrees well with the model, but there are many differences between Fuke semidiurnal tide and the results from model.展开更多
Accurate knowledge of mesospheric winds and waves is essential for studying the dynamics and climate in the mesosphere and lower thermosphere(MLT)region.In this study,we conduct a comparative analysis of the mesospher...Accurate knowledge of mesospheric winds and waves is essential for studying the dynamics and climate in the mesosphere and lower thermosphere(MLT)region.In this study,we conduct a comparative analysis of the mesosphere tidal results obtained from two adjacent meteor radars at low latitudes in Kunming,China,from November 2013 to December 2014.These two radars operate at different frequencies of 37.5 MHz and 53.1 MHz,respectively.However,overall good agreement is observed between the two radars in terms of horizontal winds and tide observations.The results show that the dominant tidal waves of the zonal and meridional winds are diurnal and semidiurnal tides.Moreover,we conduct an exhaustive statistical analysis to compare the tidal amplitudes and vertical wavelengths recorded by the dual radar systems,which reveals a high degree of alignment in tidal dynamics.The investigation includes variances and covariances of tidal amplitudes,which demonstrate remarkable consistency across measurements from both radars.This finding highlights clear uniformity in the mesospheric tidal patterns observed at low latitudes by the two neighboring meteor radars.Results of the comparative analysis specifically underscore the significant correlation in vertical wavelength measurements,validating the robustness of radar observations for tidal research.展开更多
利用中国廊坊站(39.4°N,116.7°E)流星雷达在2012年4月1日至2013年3月31日的水平风场观测数据,分析廊坊上空80~100 km的中间层与低热层(Mesospherc and Lower Thermosphere,MLT)大气平均纬向风和经向风的季节变化特征.结果表...利用中国廊坊站(39.4°N,116.7°E)流星雷达在2012年4月1日至2013年3月31日的水平风场观测数据,分析廊坊上空80~100 km的中间层与低热层(Mesospherc and Lower Thermosphere,MLT)大气平均纬向风和经向风的季节变化特征.结果表明平均纬向风和经向风都表现出明显的季节变化特征.平均纬向风在冬季MLT盛行西风,极大值位于中间层顶,随高度增加西风减弱;在夏季中间层为东风,低热层为强西风,风向转换高度约为82 km.平均经向风在冬季以南风为主,在夏季盛行北风.纬向风和经向风在春秋两季主要表现为过渡阶段.流星雷达观测结果与WACCM4模式和HWM93模式模拟的气候变化特点基本一致,但WACCM4模式纬向风和经向风风速偏大,而HWM93模式纬向风和经向风风速偏小.展开更多
利用17年的SABER(Sounding of the Atmosphere using Broadband Emission Radiometry)Level2C数据研究了中间层与低热层大气(MLT, Mesosphere and Lower Thermosphere) CO2 VMR(Volume Mixing Ratio)的年际变化特征.使用多元线性回归模...利用17年的SABER(Sounding of the Atmosphere using Broadband Emission Radiometry)Level2C数据研究了中间层与低热层大气(MLT, Mesosphere and Lower Thermosphere) CO2 VMR(Volume Mixing Ratio)的年际变化特征.使用多元线性回归模型对双月平均时间序列拟合,定量地提取各变化特征.结果表明,SABER CO2 VMR长期趋势在中间层保持在5.5%/decade左右,在中间层顶和低热层降低至4.5%/decade左右;结果与模式预测在统计意义上相符.长期趋势没有显著的纬度差异,但在各纬度上都具有明显的季节依赖,MLT CO2 VMR长期趋势的季节性改变源自低层大气长期趋势季节性改变.SABER CO2 VMR对QBO (Quasi-Biannual Oscillation)和ENSO (El Nino-Southern Oscillation)在绝大多数区域没有统计显著的响应;对太阳活动11年循环以负响应为主,在部分区域出现的微弱正响应目前没有合适的物理机制解释.展开更多
Since 2002, we have been observing the mesosphere and lower thermosphere (MLT) region over King Sejong Station (KSS; 62.22°S, 58.78°W), Antarctica, using various instruments such as the Spectral Airglow ...Since 2002, we have been observing the mesosphere and lower thermosphere (MLT) region over King Sejong Station (KSS; 62.22°S, 58.78°W), Antarctica, using various instruments such as the Spectral Airglow Temperature Imager (SATI), All Sky Camera (ASC) and VHF meteor radar. The meteor radar, installed in March 2007, continuously measures neutral winds in the alti- tude region 70-110 km and neutral temperature near the mesopause 24 h.d-1, regardless of weather conditions. In this study, we present results of an analysis of the neutral wind data for gravity wave activity over the tip of the Antarctic Peninsula, where such activity is known to be very high. Also presented is temperature estimation from measurement of the decay times of meteor trails, which is compared with other temperature measurements from SATI and the Sounding of the Atmosphere using Broadband Emis- sion Radiometry (SABER) instrument onboard the Thermosphere Ionosphere Mesosphere Energy and Dynamics (TIMED) satel- lite.展开更多
A Double Sodium Layer(DSL) structure was observed during the night of August 22, 2011 over Haikou,China(20°N,110°E) by Na lidar.This DSL comprised a typical sodium layer at altitudes of 80~105km and a highe...A Double Sodium Layer(DSL) structure was observed during the night of August 22, 2011 over Haikou,China(20°N,110°E) by Na lidar.This DSL comprised a typical sodium layer at altitudes of 80~105km and a higher sodium layer at altitudes of 105~115km in about 0.5 h.A wavelength of 589 nm dye laser pumped by a Nd:YAG laser was used to make the measurement. The backscattered fluorescence photons from the sodium layer were collected by a telescope with a primary mirror of 1000 mm in diameter.The sodium density of these layers during the nighttime observation in the Mesosphere and Lower-Thermosphere(MLT) was studied.展开更多
基金the National Key R&D Program of China(Grant No.2022YFF0503702)the National Natural Science Foundation of China(Grant Nos.42004132,42074195 and 42074183)+1 种基金the open funding of the Ministry of Natural Resources Key Laboratory for Polar Science(Grant No.KP202104)the China Geological Survey(Grant No.ZD20220145).
文摘Utilizing observations by the Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)instrument,we quantitatively assessed the dawn-dusk asymmetry in temperature disturbances within the high-latitude mesosphere and lower thermosphere(MLT)during the main phase of geomagnetic storms in this study.An analysis of five geomagnetic superstorm events indicated that during the main phase,negative temperature disturbances were more prevalent on the dawn side than on the dusk side in the high-latitude MLT region.Results of a statistical analysis of 54 geomagnetic storm events also revealed a notable disparity in temperature disturbances between the dawn and dusk sides.At high latitudes,38.2%of the observational points on the dawn side exhibited negative temperature disturbances(less than−5 K),whereas on the dusk side,this percentage was only 29.5%.In contrast,at mid-latitudes,these proportions were 34.1%and 36.5%,respectively,showing no significant difference.We also conducted a statistical analysis of temperature disturbances at different altitudes,which revealed an increase in the proportion of warming disturbances with altitude.Conversely,the proportion of cooling disturbances initially rose with altitude,reaching a peak around 105 km,and subsequently decreased.These temperature disturbance differences could be explained by the day-night asymmetry in vertical wind disturbances during storm conditions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40621003 40804037 and 40621003)+1 种基金National Basic Research Program of China (Grant No. 2006CB806306) Specialized Research Fund for State Key Laboratories
文摘Fuke (19.5°N, 109.1°E) meteor radar is the first radar of the low latitudes of China, which is used to detect the wind in the meso- sphere and lower thermosphere. In this paper, by using the wind data near three months (1 February-20 April, 2009), we first present the variation of the atmospheric diurnal tide, semidiurnal tide and mean wind in the height range 80-100 km over the low latitudes of China. The results from our analysis are summarized below. During spring months, there are quite strong tides in the mesopause region of Fuke. The diurnal tidal amplitude is significantly larger than the amplitude of semidiurnal tide, and the maximum amplitude (about 100 m/s) of diurnal tide appear in the meridional wind. The vertical phases of both diurnal tide and semidiurnal tide propagate downward. In addition, the observed tides are compared with the linear tide model (Global Scale Wave Model, GSWM02), and the results show that Fuke diurnal tide agrees well with the model, but there are many differences between Fuke semidiurnal tide and the results from model.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42125402 and 42174183)the National Key Technologies R&D Program of China (Grant No.2022YFF0503703)+2 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000)the foundation of the National Key Laboratory of Electromagnetic Environment and the Fundamental Research Funds for the Central Universitiesthe Chinese Meridian Project
文摘Accurate knowledge of mesospheric winds and waves is essential for studying the dynamics and climate in the mesosphere and lower thermosphere(MLT)region.In this study,we conduct a comparative analysis of the mesosphere tidal results obtained from two adjacent meteor radars at low latitudes in Kunming,China,from November 2013 to December 2014.These two radars operate at different frequencies of 37.5 MHz and 53.1 MHz,respectively.However,overall good agreement is observed between the two radars in terms of horizontal winds and tide observations.The results show that the dominant tidal waves of the zonal and meridional winds are diurnal and semidiurnal tides.Moreover,we conduct an exhaustive statistical analysis to compare the tidal amplitudes and vertical wavelengths recorded by the dual radar systems,which reveals a high degree of alignment in tidal dynamics.The investigation includes variances and covariances of tidal amplitudes,which demonstrate remarkable consistency across measurements from both radars.This finding highlights clear uniformity in the mesospheric tidal patterns observed at low latitudes by the two neighboring meteor radars.Results of the comparative analysis specifically underscore the significant correlation in vertical wavelength measurements,validating the robustness of radar observations for tidal research.
基金supported by the USTC Research Funds of the Double First-Class Initiative(YD3420002004)the National Natural Science Foundation of China(42125402,41974174,42188101,41831071,42174183,and 41904135)+4 种基金the B-type Strategic Priority Program of CAS(XDB41000000)the Project of Stable Support for Youth Team in Basic Research Field,CAS(YSBR-018)the Fundamental Research Funds for the Central Universitiesthe Anhui Provincial Natural Science Foundation(2008085MD113)the Joint Open Fund of Mengcheng National Geophysical Observatory(MENGO202209).
文摘利用17年的SABER(Sounding of the Atmosphere using Broadband Emission Radiometry)Level2C数据研究了中间层与低热层大气(MLT, Mesosphere and Lower Thermosphere) CO2 VMR(Volume Mixing Ratio)的年际变化特征.使用多元线性回归模型对双月平均时间序列拟合,定量地提取各变化特征.结果表明,SABER CO2 VMR长期趋势在中间层保持在5.5%/decade左右,在中间层顶和低热层降低至4.5%/decade左右;结果与模式预测在统计意义上相符.长期趋势没有显著的纬度差异,但在各纬度上都具有明显的季节依赖,MLT CO2 VMR长期趋势的季节性改变源自低层大气长期趋势季节性改变.SABER CO2 VMR对QBO (Quasi-Biannual Oscillation)和ENSO (El Nino-Southern Oscillation)在绝大多数区域没有统计显著的响应;对太阳活动11年循环以负响应为主,在部分区域出现的微弱正响应目前没有合适的物理机制解释.
基金financially supported by research funds(Grant nos.PE13010 and PP12320)from the Korea Polar Research Institute
文摘Since 2002, we have been observing the mesosphere and lower thermosphere (MLT) region over King Sejong Station (KSS; 62.22°S, 58.78°W), Antarctica, using various instruments such as the Spectral Airglow Temperature Imager (SATI), All Sky Camera (ASC) and VHF meteor radar. The meteor radar, installed in March 2007, continuously measures neutral winds in the alti- tude region 70-110 km and neutral temperature near the mesopause 24 h.d-1, regardless of weather conditions. In this study, we present results of an analysis of the neutral wind data for gravity wave activity over the tip of the Antarctic Peninsula, where such activity is known to be very high. Also presented is temperature estimation from measurement of the decay times of meteor trails, which is compared with other temperature measurements from SATI and the Sounding of the Atmosphere using Broadband Emis- sion Radiometry (SABER) instrument onboard the Thermosphere Ionosphere Mesosphere Energy and Dynamics (TIMED) satel- lite.
基金Supported by High Education Research of the Education Department of Hainan Province(Hjkj2012-21)Specialized Research Fund for State Key Laboratories(Y02211J82S,Y02211A49S)
文摘A Double Sodium Layer(DSL) structure was observed during the night of August 22, 2011 over Haikou,China(20°N,110°E) by Na lidar.This DSL comprised a typical sodium layer at altitudes of 80~105km and a higher sodium layer at altitudes of 105~115km in about 0.5 h.A wavelength of 589 nm dye laser pumped by a Nd:YAG laser was used to make the measurement. The backscattered fluorescence photons from the sodium layer were collected by a telescope with a primary mirror of 1000 mm in diameter.The sodium density of these layers during the nighttime observation in the Mesosphere and Lower-Thermosphere(MLT) was studied.