Mesostructured iron oxides(MIOs) were nanocasted from a plugged hexagonal templated silica(PHTS) with a Brunauer-Emmett-Teller(BET) surface area of 694 m 2 /g.Results of X-ray diffraction(XRD),transmission ele...Mesostructured iron oxides(MIOs) were nanocasted from a plugged hexagonal templated silica(PHTS) with a Brunauer-Emmett-Teller(BET) surface area of 694 m 2 /g.Results of X-ray diffraction(XRD),transmission electron microscopy(TEM) and N 2 adsorption-desorption suggest that the nanocasted MIOs are synthetic hematite(α-Fe2O3) with a wormhole-like mesoporous network.As(V) adsorption test shows that the selected MIO—MIO-500(calcinated at 500 °C) with a BET surface area of 82 m^ 2 /g has a maximum adsorption capacity of 5.39 mg/g for As(V),which is 2.5 times as large as that of natural hematite adsorbent.The study suggests that MIOs could be potentially used as the adsorbent of As(V) in wastewater.展开更多
基金Supported by the National Natural Science Foundation of China(No.51002080)the Research Funds of Nanjing University of Information Science and Technology(NUIST),China(No.S8108179001)+1 种基金the College Students Practice Innovative Projects of Jiangsu Province,China(No.N1885010087)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Mesostructured iron oxides(MIOs) were nanocasted from a plugged hexagonal templated silica(PHTS) with a Brunauer-Emmett-Teller(BET) surface area of 694 m 2 /g.Results of X-ray diffraction(XRD),transmission electron microscopy(TEM) and N 2 adsorption-desorption suggest that the nanocasted MIOs are synthetic hematite(α-Fe2O3) with a wormhole-like mesoporous network.As(V) adsorption test shows that the selected MIO—MIO-500(calcinated at 500 °C) with a BET surface area of 82 m^ 2 /g has a maximum adsorption capacity of 5.39 mg/g for As(V),which is 2.5 times as large as that of natural hematite adsorbent.The study suggests that MIOs could be potentially used as the adsorbent of As(V) in wastewater.