期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Gold mineralization in Jiaodong Peninsula and destruction of North China Craton:Insights from Mesozoic granite 被引量:1
1
作者 WANG Bin ZHOU Jianbo +8 位作者 DING Zhengjiang ZHAO Tiqun SONG Mingchun BAO Zhongyi LYU Junyang XU Shaohui YAN Chunming LIU Xiangdong LIU Jialiang 《Global Geology》 2023年第2期98-113,共16页
Large-scale tectonic magmatism and extensive gold mineralization have occurred in the eastern North China Craton(NCC)(Jiaodong and Liaodong peninsulas)since Mesozoic,which indicated that the region experienced decrato... Large-scale tectonic magmatism and extensive gold mineralization have occurred in the eastern North China Craton(NCC)(Jiaodong and Liaodong peninsulas)since Mesozoic,which indicated that the region experienced decratonization process.The genesis type of granites evolved from S-type to I-type and A-type during Late Jurassic to Early Cretaceous,and thus reflects the evolution of geodynamics in the Late Mesozoic,indicating the varied subduction process of the Paleo-Pacific Plate(PPP)and the craton destruction.The evolution of geochemical features shows that the mantle beneath the Jiaodong Peninsula evolved from EM-II in Jurassic to EM-I in Early Cretaceous,demonstrating that the mantle switched from enriched to depleted.The gold of decratonic gold deposits in Jiaodong Peninsula mainly comes from the lithospheric mantle domains metasomatized by fluids derived from the metamorphism and dehydration of the subducted slab in the mantle transition zone.The rapid decomposition of minerals leads to the concentrated release of ore-forming fluids,and this process leads to the explosive gold mineralization during the craton destruction.Extensive magmatic uplift and extensional structures,triggered by the craton destruction in Early Cretaceous formed the extensional tectonic system,providing space for the decratonic gold deposits in Jiaodong Peninsula. 展开更多
关键词 Jiaodong Peninsula mesozoic granite craton destruction decratonic gold deposit extensional structure
下载PDF
Quantitative characterization of vertical zonation of Mesozoic granite weathering reservoirs in the coastal area of eastern Fujian Province,China
2
作者 Jing-Song Hu Yi-Ming Jiang +3 位作者 Hua-Feng Tang Wen-Rui Ma Peng Tao Ning-Yuan Sun 《Petroleum Science》 SCIE EI CSCD 2023年第5期2664-2682,共19页
Weathering crust reservoirs have obvious vertical zonation,which is the focus of weathering crust reservoir research,but there is a lack of quantitative characterization indexes.To achieve the quantitative characteriz... Weathering crust reservoirs have obvious vertical zonation,which is the focus of weathering crust reservoir research,but there is a lack of quantitative characterization indexes.To achieve the quantitative characterization of granite weathering crust reservoir and provide the basis for oil exploration of granite weathering crust buried hill reservoir,in this paper,the vertical zonation of granite weathering crust reservoir is quantitatively divided by testing and analyzing the uniaxial compressive strength(UCS),magnetic susceptibility(MS),permeability,and chemical index of alteration(CIA)of the Mesozoic granite weathering crust in the coastal area of eastern Fujian.The results show that the granite weathering crust reservoir can be divided into four zones vertically:a soil zone(SZ),weathered and dissolved zone(WDZ),fracture zone(FZ),and bedrock zone(BZ).A cataclastic area is developed in the FZ and BZ,in which structural fractures are well-developed,the fracture surface density is usually greater than 200 m/m^(2),and the contribution to the fractures in the rock mass is up to about 50%,making this the sweet spot of the reservoir.In the SZ,the rocks are loose,and the pores are well-developed.The UCS is less than 10 MPa,and the average rate of change of the UCS(Δ_(σ))is 0.90.The average permeability is 2823.00 mD,and the average rate of change of the permeability(Δ_(κ))is 5.13.The average CIA is 74.9%.The average clay mineral content is 7%.The rocks in the WDZ have been significantly weathered by physical and chemical processes,and the weathering fractures and dissolution pores are well-developed.The average UCS is 18.2 MPa,and the averageΔ_(σ)is 0.70.The average permeability is 143.80 mD,and averageΔ_(κ)is 4.17.The average CIA is 65.3%.The average clay mineral content is 4%.Under the influence of tectonic movement and physical weathering,the rocks in the FZ have developed structural fractures and a few weathered fractures.The average UCS is 57.9 MPa,and the averageΔ_(σ)is 0.18.The average permeability is 5.50 mD,and the averageΔ_(κ)is 2.55.The average CIA is 61.6%.The average clay mineral content is 2%.In the BZ,the rocks are intact and hard.The average UCS is 69.9 MPa,and the average Ds is 0.13.The average permeability is 1.46 mD,and the averageΔ_(κ)is 1.43.The average CIA is 57.8%.The average clay mineral content is less than 1%.The multi-parameter combination of the UCS,Δ_(σ),permeability,Δ_(κ),CIA,and clay mineral content achieved good results in the division of the zones of the weathering crust.The UCS increases gradually from top to bottom,while Ds,permeability,Δ_(κ),CIA,and clay mineral content all decrease gradually.In addition,based on the petrophysical parameters of the rocks,including the density,resistivity,and acoustic velocity,a good division effect was also achieved,which can provide a basis for the vertical zonation of the granite buried-hill weathering crust reservoir. 展开更多
关键词 Granite weathering crust Vertical zonation of reservoir Quantitative characterization Eastern Fujian mesozoic granite
下载PDF
MESOZOIC GRANITIC MAGMATISM ANDMETALLOGENY IN THE KHENTEYRANGE,MONGOLIA
3
《Geotectonica et Metallogenia》 2001年第1期79-84,共6页
关键词 mesozoic GRANITIC MAGMATISM ANDMETALLOGENY IN THE KHENTEYRANGE MONGOLIA HIGH ROCK very THAN
下载PDF
Geological characteristics and mineralization setting of the Zhuxi tungsten(copper) polymetallic deposit in the Eastern Jiangnan Orogen 被引量:25
4
作者 CHEN GuoHua SHU LiangShu +2 位作者 SHU LiMin ZHANG Cheng OUYANG YongPeng 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第4期803-823,共21页
The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contac... The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contact zone between Yanshanian granites and Carboniferous-Permian limestone. Granites related to this mineralization mainly include equigranular, middle- to coarse-grained granites and granitic porphyries. There are two mineralization types: skarn scheelite(copper) and granite scheelite mineralization. The former is large scale and has a high content of scheelite, whereas the latter is small scale and has a low content of scheelite. In the Taqian-Fuchun Basin, its NW boundary is a thrust fault, and the SE boundary is an angular unconformity with Proterozoic basement. In Carboniferous-Permian rock assemblages, the tungsten and copper contents in the limestone are both very high. The contents of major elements in granitoids do not differ largely between the periphery and the inside of the Zhuxi ore deposit. In both areas, the values of the aluminum saturation index are A/CNK>1.1, and the rocks are classified as potassium-rich strongly peraluminous granites. In terms of trace elements, compared to granites on the periphery of the Zhuxi ore deposit, the granites inside the Zhuxi ore deposit have smaller d Eu values, exhibit a significantly more negative Eu anomaly, are richer in Rb, U, Ta, Pb and Hf, and are more depleted in Ba, Ce, Sr, La and Ti, which indicates that they are highly differentiated S-type granites with a high degree of evolution. Under the influence of fluids, mineralization of sulfides is evident within massive rock formations inside the Zhuxi ore deposit, and the mean SO_3 content is 0.2%. Compared to peripheral rocks, the d Eu and total rare earth element(REE) content of granites inside the Zhuxi ore deposit are both lower, indicating a certain evolutionary inheritance relationship between the granites on the periphery and the granites inside the Zhuxi ore deposit. For peripheral and ore district plutons, U-Pb zircon dating shows an age range of 152–148 Ma. In situ Lu-Hf isotope analysis of zircon in the granites reveals that the calculated e_(Hf)(t) values are all negative, and the majority range from -6 to -9. The T_(DM2) values are concentrated in the range of 1.50–1.88 Ga(peak at 1.75 Ga), suggesting that the granitic magmas are derived from partial melting of ancient crust. This paper also discusses the metallogenic conditions and ore-controlling conditions of the ore district from the perspectives of mineral contents, hydrothermal alteration, and ore-controlling structures in the strata and the ore-bearing rocks. It is proposed that the Zhuxi ore deposit went through a multistage evolution, including oblique intrusion of granitic magmas, skarn mineralization, cooling and alteration, and precipitation of metal sulfides. The mineralization pattern can be summarized as "copper in the east and tungsten in the west, copper at shallow-middle depths and tungsten at deep depths, tungsten in the early stage and copper in the late stage". 展开更多
关键词 Tungsten(copper) polymetallic deposit Late mesozoic granites Carboniferous-Permian carbonate rocks Skarn mineralization Zhuxi ore deposit Eastern Jiangnan Orogen
原文传递
Extensional tectonics and North China Craton destruction:Insights from the magnetic susceptibility anisotropy(AMS)of granite and metamorphic core complex 被引量:2
5
作者 Wei LIN Jipei ZENG +7 位作者 Lingtong MENG Huabiao QIU Wei WEI Zhiheng REN Yang CHU Shuangjian LI Chao SONG Qincheng WANG 《Science China Earth Sciences》 SCIE EI CSCD 2021年第9期1557-1589,共33页
The craton is a long-lived stable geologic unit on the Earth’s surface.However,since the Mesozoic,the North China Craton(NCC)experienced large-scale lithospheric removal,the fundamental change of physical and chemica... The craton is a long-lived stable geologic unit on the Earth’s surface.However,since the Mesozoic,the North China Craton(NCC)experienced large-scale lithospheric removal,the fundamental change of physical and chemical characteristics of the lithospheric mantle,widely distributed crustal deformation,and extensive magmatism.This complex evolution contrary to other cratons is called the NCC destruction.Widespread magmatism in the eastern NCC is an important response to the lithospheric removal at depth and crustal deformation on the surface.The plutons emplace under a tectonic context and therefore record the information of the tectonics;especially,the anisotropy magnetic susceptibility(AMS)pattern of the pluton was acquired with the influence of regional stress.In the past fifteen years,about 22 plutons intruding during the different periods from the Late Triassic to the late stage of the Early Cretaceous have been studied with AMS.The emplacement mechanisms of plutons and the contemporary tectonic setting were discussed to constrain their relationship with the NCC destruction in different stages of magmatism.As a result,the Late Triassic,Early Jurassic,and Late Jurassic plutons exhibit consistent N(E)-S(W)trending magnetic lineations.The early stage of Early Cretaceous plutons display NW-SE trending magnetic lineations,while the late stage of Early Cretaceous plutons show magnetic lineations with various orientations.Combined with previous studies,it is concluded that the emplacements of the plutons intruding in these three stages were controlled by weak N(E)-S(W)trending extension,regional NW-SE trending extension,and weak extension in the shallow crustal level,respectively.The transformation of regional extension from the N(E)-S(W)to the NW-SE direction was accompanied by a strain-increasing tendency.The extensional tectonics in the eastern NCC was interpreted to represent the interaction between Mongol-Okhotsk belt,PaleoPacific plate,and eastern Eurasian continent. 展开更多
关键词 mesozoic granite Anisotropy of magnetic susceptibility(AMS)of granite Eastern NCC Extensional tectonics NCC destruction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部