期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Paleozoic and Mesozoic Basement Magmatisms of Eastern Qaidam Basin,Northern Qinghai-Tibet Plateau:LA-ICP-MS Zircon U-Pb Geochronology and its Geological Significance 被引量:32
1
作者 CHEN Xuanhua George GEHRELS +2 位作者 YIN An LI Li JIANG Rongbao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第2期350-369,共20页
The eastern margin of the Qaidam Basin lies in the key tectonic location connecting the Qinling, Qilian and East Kunlun orogens. The paper presents an investigation and analysis of the geologic structures of the area ... The eastern margin of the Qaidam Basin lies in the key tectonic location connecting the Qinling, Qilian and East Kunlun orogens. The paper presents an investigation and analysis of the geologic structures of the area and LA-ICP MS zircon U-Pb dating of Paleozoic and Mesozoic magmatisms of granitoids in the basement of the eastern Qaidam Basin on the basis of 16 granitoid samples collected from the South Qilian Mountains, the Qaidam Basin basement and the East Kunlun Mountains. According to the results in this paper, the basement of the basin, from the northern margin of the Qaidam Basin to the East Kunlun Mountains, has experienced at least three periods of intrusive activities of granitoids since the Early Paleozoic, i.e. the magmatisms occurring in the Late Cambrian (493.1±4.9 Ma), the Silurian (422.9±8.0 Ma-420.4±4.6 Ma) and the Late Permian-Middle Triassic (257.8±4.0 Ma-228.8+1.5 Ma), respectively. Among them, the Late Permian - Middle Triassic granitoids form the main components of the basement of the basin. The statistics of dated zircons in this paper shows the intrusive magmatic activities in the basement of the basin have three peak ages of 244 Ma (main), 418 Ma, and 493 Ma respectively. The dating results reveal that the Early Paleozoic magmatism of granitoids mainly occurred on the northern margin of the Qaidam Basin and the southern margin of the Qilian Mountains, with only weak indications in the East Kunlun Mountains. However, the distribution of Permo-Triassic (P-T) granitoids occupied across the whole basement of the eastern Qaidam Basin from the southern margin of the Qilian Mountains to the East Kunlun Mountains. An integrated analysis of the age distribution of P-T granitoids in the Qaidam Basin and its surrounding mountains shows that the earliest P-T magmatism (293.6-270 Ma) occurred in the northwestern part of the basin and expanded eastwards and southwards, resulting in the P-T intrusive magmatism that ran through the whole basin basement. As the Cenozoic basement thrust system developed in the eastern Qaidam Basin, the nearly N-S-trending shortening and deformation in the basement of the basin tended to intensify from west to east, which went contrary to the distribution trend of N-S-trending shortening and deformation in the Cenozoic cover of the basin, reflecting that there was a transformation of shortening and thickening of Cenozoic crust between the eastern and western parts of the Qaidam Basin, i.e., the crustal shortening of eastern Qaidam was dominated by the basement deformation (triggered at the middle and lower crust), whereas that of western Qaidam was mainly by folding and thrusting of the sedimentary cover (the upper crust). 展开更多
关键词 LA-ICP MS zircon U-Pb dating thrust fault system crust shortening and deformation Paleozoic and mesozoic magmatism Qinling-Qilian-Kunlun joint zone Qaidam Basin
下载PDF
Piecemeal Delamination of Thickened Lithosphere Triggered Pulsed Magmatism and Mineralization during Late Mesozoic Intracontinental Orogeny in East Asia 被引量:2
2
作者 ZHANG Yueqiao DONG Shuwen +1 位作者 LI Jianhua QIU Erkang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第S01期112-114,共3页
The East Asia continent is characterized by a mosaic architecture with various composing blocks,such as the North and South China blocks,which had been collaged in Late Permian to Triassic in response to the break-up ... The East Asia continent is characterized by a mosaic architecture with various composing blocks,such as the North and South China blocks,which had been collaged in Late Permian to Triassic in response to the break-up of Pangea.In the Late Mesozoic. 展开更多
关键词 East Asia Late mesozoic magmatism intracontinental orogeny piecemeal delamination lithospheric thickening
下载PDF
MESOZOIC GRANITIC MAGMATISM ANDMETALLOGENY IN THE KHENTEYRANGE,MONGOLIA
3
《Geotectonica et Metallogenia》 2001年第1期79-84,共6页
关键词 mesozoic GRANITIC magmatism ANDMETALLOGENY IN THE KHENTEYRANGE MONGOLIA HIGH ROCK very THAN
下载PDF
Late Paleozoic to Mesozoic Intrusions Distribution in the North Sanjiang Orogenic Belt,Southwest China:Evidence from Zircon U-Pb Dating and Geochemistry 被引量:4
4
作者 GONG Xuejing YANG Zhusen +3 位作者 MENG Xiangjin PAN Xiaofei WANG Qian ZHANG Lejun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第3期898-946,共49页
A mosaic of terranes or blocks and associated Late Paleozoic to Mesozoic sutures are characteristics of the north Sanjiang orogenic belt (NSOB). A detailed field study and sampling across the three magmatic belts in... A mosaic of terranes or blocks and associated Late Paleozoic to Mesozoic sutures are characteristics of the north Sanjiang orogenic belt (NSOB). A detailed field study and sampling across the three magmatic belts in north Sanjiang orogenic belt, which are the Jomda-Weixi magmatic belt, the Yidun magmatic belt and the Northeast Lhasa magmatic belt, yield abundant data that demonstrate multiphase magmatism took place during the late Paleozoic to early Mesozoic. 9 new zircon LA-ICP-MS U-Pb ages and 160 published geochronological data have identified five continuous episodes of magma activities in the NSOB from the Late Paleozoic to Mesozoic: the Late Permian to Early Triassic (c. 261-230 Ma); the Middle to Late Triassic (c. 229-210 Ma); the Early to Middle Jurassic (c. 206-165 Ma); the Early Cretaceous (c. 138-110 Ma) and the Late Cretaceous (c. 103-75 Ma). 105 new and 830 published geochemical data reveal that the intrusive rocks in different episodes have distinct geochemical compositions. The Late Permian to Early Triassic intrusive rocks are all distributed in the Jomda-Weixi magmatic belt, showing arc-like characteristics; the Middle to Late Triassic intrusive rocks widely distributed in both Jomda-Weixi and Yidun magmatic belts, also demonstrating volcanic-arc granite features; the Early to Middle Jurassic intrusive rocks are mostly exposed in the easternmost Yidun magmatic belt and scattered in the westernmost Yangtza Block along the Garze-Litang suture, showing the properties of syn-collisional granite; nearly all the Early Cretaceous intrusive rocks distributed in the NE Lhasa magmatic belt along Bangong suture, exhibiting both arc-like and syn-collision-like characteristics; and the Late Cretaceous intrusive rocks mainly exposed in the westernmost Yidun magmatic belt, with A-type granite features. These suggest that the co-collision related magmatism in Indosinian period developed in the central and eastern parts of NSOB while the Yanshan period co-collision related magmatism mainly occurred in the west area. In detail, the earliest magmatism developed in late Permian to Triassic and formed the Jomda-Wei magmatic belt, then magmatic activity migrated eastwards and westwards, forming the Yidun magmatic bellt, the magmatism weakend at the end of late Triassic, until the explosure of the magmatic activity occurred in early Cretaceous in the west NSOB, forming the NE Lhasa magmatic belt. Then the magmatism migrated eastwards and made an impact on the within-plate magmatism in Yidun magmatic belt in late Cretaceous. 展开更多
关键词 intrusions distribution granitoid age and geochemistry Paleozoic and mesozoic subduction-related magmatic belt Sanjiang orogenic belt
下载PDF
Geodynamics of decratonization and related magmatism and mineralization in the North China Craton 被引量:15
5
作者 Jin-Hui YANG Lei XU +4 位作者 Jin-Feng SUN Qingdong ZENG Ya-Nan ZHAO Hao WANG Yu-Sheng ZHU 《Science China Earth Sciences》 SCIE EI CSCD 2021年第9期1409-1427,共19页
The North China Craton(NCC)experienced strong destruction(i.e.,decratonization)during the Mesozoic,which triggered intensive magmatism,tectonism and thermal events and formed large-scale gold and other metal deposits ... The North China Craton(NCC)experienced strong destruction(i.e.,decratonization)during the Mesozoic,which triggered intensive magmatism,tectonism and thermal events and formed large-scale gold and other metal deposits in the eastern part of the craton.However,how the decratonization controls the formation and distribution of large-scale of gold and other metal deposits is not very clear.Based on a large number of published data and new results,this paper systematically summarizes all the data for the rock assemblages,chronology,geochemistry and petrogenesis of Mesozoic magmatic rocks,as well as for the mineralizing ages of gold and other metal deposits and the evolution of the Mesozoic basins in the eastern NCC.The results are used to restore the extensional rates of Mesozoic to Cenozoic basins and the strike-slip distance of the Tanlu Fault,to ascertain the location of the Paleo-Pacific plate subduction zones during the Mesozoic to Cenozoic,and to reconstruct the temporal and spatial distribution of Mesozoic gold and other metal deposits and magmatic rocks in the eastern NCC.It is obtained that the magmatism and mineralization in the eastern NCC westward migrate from east to west during the Early to Middle Jurassic,but they eastward migrate from west to east during the Early Cretaceous.The metallogenesis of these deposits is genetically related to magmatism,and the magmas provided some ore-forming materials and fluids for the generation of metal deposits.The geodynamic mechanism of decratonization and related magmatism and mineralization is proposed,i.e.,the westward low-angle subduction of the Paleo-Pacific slab beneath the NCC formed continental magmatic arc with plenty of porphyry Cu-Mo-Au deposits in the Jurassic,similar to the Andean continental arc in South America.The mantle wedge was metasomatized by the fluids/melts derived from the subducting slab,laying a material foundation for hydrothermal mineralization in the Early Cretaceous.While the rollback of the subducting slab with gradually increasing subduction angle and the retreat of the subduction zones during the Early Cretaceous induced strong destruction of the craton and the formation of extensive magmatic rocks and large-scale gold and other metal deposits. 展开更多
关键词 Decratonization Large-scale gold mineralization mesozoic magmatism GEODYNAMICS North China Craton
原文传递
Fault-controlled regional magmatism and mineral deposition in central Cathaysia——Evidence from ambient noise tomography 被引量:2
6
作者 Lingmin CAO Huaiyu YUAN +4 位作者 Liang ZHAO Minghui ZHAO Haibo HUANG Tianyao HAO Xuelin QIU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2022年第9期1715-1735,共21页
Guangdong Province in the central Cathaysian Block has two world-class metallogenic belts, namely, the Nanling and Southeastern Coastal Metallogenic Belts(NLMB and SCMB), which are spatially coincide with the major re... Guangdong Province in the central Cathaysian Block has two world-class metallogenic belts, namely, the Nanling and Southeastern Coastal Metallogenic Belts(NLMB and SCMB), which are spatially coincide with the major regional Ganjiang and Zhenghe-Dapu Fault Zones(GJFZ and ZDFZ). However, what roles the faults played in mineral deposition and magmatism is unclear. Using ambient noise tomography, we obtain a 3-D whole-crust shear wave velocity model. By combining available regional geophysical models, we characterize the architecture of the regional shallow lithosphere and infer its possible tectonic connection to magmatic sources, pathways and surface deposition. The results show that the study area is loosely divided by the two major faults, the GJFZ and ZDFZ, into distinct velocity domains. In the north high Vand low V/Vcrust in the NLMB imply crustal remelting, which leads to the general felsic composition. In the coastal area, the lower crustal high Vanomaly is attributed to upwelling melts associated with Cretaceous magmatic activity. Between mineral belts, a swath of crustal lowvelocity zones extend into the uppermost mantle, manifesting partial melting related to upwelling magmas that may hint at a deep origin of magma from subcrustal lithosphere and likely feed surface mineral deposits through major faults. Secondary NW-trending faults coincide with low velocities and facilitated magmatic migration. A correlation between coastward extension of low velocities and younging of the Jurassic and Cretaceous magmatism is suggestive of a combined effect of slab rollback and a change in the direction of the Paleo-Pacific subduction system. We speculate a regional fault-control model in the central Cathaysian Block for the spatial-temporal evolution of regional deformation and magmatism during the middle Mesozoic. 展开更多
关键词 Ambient noise tomography Crustal Vs structure Ganjiang Fault Zone Zhenghe-Dapu Fault Zone mesozoic magmatism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部