The “Internet of Things” (IoT) refers to a set of intelligent “objects” that can communicate with each other directly or through a network. The IoT is the embodiment of the idea that everything can be connected an...The “Internet of Things” (IoT) refers to a set of intelligent “objects” that can communicate with each other directly or through a network. The IoT is the embodiment of the idea that everything can be connected anywhere and at any time. The concept can be applied to sectors such as e-health, e-government, automotive, geographic information systems, remote sensing, home networking, e-commerce and climate change mitigation. Unlike the Internet, the IoT has its own constraints, notably those linked to heterogeneity. This divergence is linked to different protocols, technologies and algorithms implemented in these connected objects for their interconnection. It should be noted that IoT devices can communicate with each other using different protocols and dedicated M2M (Machine to Machine) communication technologies. The aim of this work is to find solutions for optimising energy consumption during data exchanges between connected objects, with respect to certain constraints by using firstly this exchange for only Message Queuing Telemetry Transport (MQTT) and secondly the combination of the MQTT protocol and the Constrained Application Protocol (CoAP) protocol to check the quantity of the energy optimized. The MQTT protocol, for example, is one of the most widely used protocols for connected objects. Admittedly, this protocol consumes less energy, but in the situation of a very large number of users, the problem of saturation inevitably arises. In this article, we propose a solution of optimising energy consumption by combining the MQTT protocol with the CoAP protocol which can allow to use the standby mode contrary to the use of MQTT where the broker is always being turning. This solution has not yet been implemented but is being discussed. In this article, we’re going to use the joulemeter which is an application developed by Microsoft to measure and estimate the energy consumption of computers and applications. In our case, we take the example of the “Service Broker for network connections” of the Windows’s 10 Operating System, in my own computer to show the difference between the consumption of energy without the standby mode and with standby mode, because with the MQTT, the Broker’s MQTT is always on. Now, with the combination MQTT and CoAP, it is possible that we have standby mode and to compare these two cases in term of consumption of an energy. And to do it, we must use the joulemeter that we installed in our computer to simulate it. This is achieved by using the CoAP protocol combined with the MQTT protocol. The aim of our work is to reduce energy consumption in order to solve the problem of saturation of the MQTT by linking it to CoAP protocol by using Joulemeter mentioned above.展开更多
Timely investigating post-disaster situations to locate survivors and secure hazardous sources is critical,but also very challenging and risky.Despite first responders putting their lives at risk in saving others,huma...Timely investigating post-disaster situations to locate survivors and secure hazardous sources is critical,but also very challenging and risky.Despite first responders putting their lives at risk in saving others,human-physical limits cause delays in response time,resulting in fatality and property damage.In this paper,we proposed and implemented a framework intended for creating collaboration between heterogeneous unmanned vehicles and first responders to make search and rescue operations safer and faster.The framework consists of unmanned aerial vehicles(UAVs),unmanned ground vehicles(UGVs),a cloud-based remote control station(RCS).A light-weight message queuing telemetry transport(MQTT)based communication is adopted for facilitating collaboration between autonomous systems.To effectively work under unfavorable disaster conditions,antenna tracker is developed as a tool to extend network coverage to distant areas,and mobile charging points for the UAVs are also implemented.The proposed framework’s performance is evaluated in terms of end-to-end delay and analyzed using architectural analysis and design language(AADL).Experimental measurements and simulation results show that the adopted communication protocol performs more efficiently than other conventional communication protocols,and the implemented UAV control mechanisms are functioning properly.Several scenarios are implemented to validate the overall effectiveness of the proposed framework and demonstrate possible use cases.展开更多
Industrial IoT(IIoT)aims to enhance services provided by various industries,such as manufacturing and product processing.IIoT suffers from various challenges,and security is one of the key challenge among those challe...Industrial IoT(IIoT)aims to enhance services provided by various industries,such as manufacturing and product processing.IIoT suffers from various challenges,and security is one of the key challenge among those challenges.Authentication and access control are two notable challenges for any IIoT based industrial deployment.Any IoT based Industry 4.0 enterprise designs networks between hundreds of tiny devices such as sensors,actuators,fog devices and gateways.Thus,articulating a secure authentication protocol between sensing devices or a sensing device and user devices is an essential step in IoT security.In this paper,first,we present cryptanalysis for the certificate-based scheme proposed for a similar environment by Das et al.and prove that their scheme is vulnerable to various traditional attacks such as device anonymity,MITM,and DoS.We then put forward an interdevice authentication scheme using an ECC(Elliptic Curve Cryptography)that is highly secure and lightweight compared to other existing schemes for a similar environment.Furthermore,we set forth a formal security analysis using the random oracle-based ROR model and informal security analysis over the Doleve-Yao channel.In this paper,we present comparison of the proposed scheme with existing schemes based on communication cost,computation cost and security index to prove that the proposed EBAKE-SE is highly efficient,reliable,and trustworthy compared to other existing schemes for an inter-device authentication.At long last,we present an implementation for the proposed EBAKE-SE using MQTT protocol.展开更多
IoT applications are promising for future daily activities;therefore, the number of IoT connected devices is expected to reach billions in the coming few years. However, IoT has different application frameworks. Furth...IoT applications are promising for future daily activities;therefore, the number of IoT connected devices is expected to reach billions in the coming few years. However, IoT has different application frameworks. Furthermore, IoT applications require higher security standards. In this work, an IoT application framework is presented with a security embedded structure using the integration between message queue telemetry transport (MQTT) and user-managed access (UMA). The performance analysis of the model is presented. Comparing the model with existing models and different design structures shows that the model presented in this work is promising for a functioning IoT design model with security. The security in the model is a built-in feature in its structure. The model is built on recommended frameworks;therefore, it is ready for integration with other web standards for data sharing, which will help in making IoT applications integrated from different developing parties.展开更多
Internet of Things (IoT) environments are being deployed all over the globe. They have the potential to form solutions to applications, from small scale applications to national and international ones. Therefore, scal...Internet of Things (IoT) environments are being deployed all over the globe. They have the potential to form solutions to applications, from small scale applications to national and international ones. Therefore, scalability, performance, and security form a triangle of requirements that must be carefully set. Furthermore, IoT applications require higher security standards. A previously proposed IoT application framework with a security embedded structure using the integration between message queue telemetry transport (MQTT) and user-managed access (UMA) is analyzed in this work. The performance analysis of the model is presented. Comparing the model with existing models and different design structures shows that the model presented in this work is promising for a functioning IoT design model with security. The results and analysis showed that the built-in security model had performed better than models with other frameworks, especially with fog implementation.展开更多
文摘The “Internet of Things” (IoT) refers to a set of intelligent “objects” that can communicate with each other directly or through a network. The IoT is the embodiment of the idea that everything can be connected anywhere and at any time. The concept can be applied to sectors such as e-health, e-government, automotive, geographic information systems, remote sensing, home networking, e-commerce and climate change mitigation. Unlike the Internet, the IoT has its own constraints, notably those linked to heterogeneity. This divergence is linked to different protocols, technologies and algorithms implemented in these connected objects for their interconnection. It should be noted that IoT devices can communicate with each other using different protocols and dedicated M2M (Machine to Machine) communication technologies. The aim of this work is to find solutions for optimising energy consumption during data exchanges between connected objects, with respect to certain constraints by using firstly this exchange for only Message Queuing Telemetry Transport (MQTT) and secondly the combination of the MQTT protocol and the Constrained Application Protocol (CoAP) protocol to check the quantity of the energy optimized. The MQTT protocol, for example, is one of the most widely used protocols for connected objects. Admittedly, this protocol consumes less energy, but in the situation of a very large number of users, the problem of saturation inevitably arises. In this article, we propose a solution of optimising energy consumption by combining the MQTT protocol with the CoAP protocol which can allow to use the standby mode contrary to the use of MQTT where the broker is always being turning. This solution has not yet been implemented but is being discussed. In this article, we’re going to use the joulemeter which is an application developed by Microsoft to measure and estimate the energy consumption of computers and applications. In our case, we take the example of the “Service Broker for network connections” of the Windows’s 10 Operating System, in my own computer to show the difference between the consumption of energy without the standby mode and with standby mode, because with the MQTT, the Broker’s MQTT is always on. Now, with the combination MQTT and CoAP, it is possible that we have standby mode and to compare these two cases in term of consumption of an energy. And to do it, we must use the joulemeter that we installed in our computer to simulate it. This is achieved by using the CoAP protocol combined with the MQTT protocol. The aim of our work is to reduce energy consumption in order to solve the problem of saturation of the MQTT by linking it to CoAP protocol by using Joulemeter mentioned above.
基金supported partially by AirForce Research Laboratory,the Office of the Secretary of Defense(OSD)(FA8750-15-2-0116)the National Science Foundation(NSF)(1832110)the National Institute of Aerospace and Langley(C16-2B00-NCAT)。
文摘Timely investigating post-disaster situations to locate survivors and secure hazardous sources is critical,but also very challenging and risky.Despite first responders putting their lives at risk in saving others,human-physical limits cause delays in response time,resulting in fatality and property damage.In this paper,we proposed and implemented a framework intended for creating collaboration between heterogeneous unmanned vehicles and first responders to make search and rescue operations safer and faster.The framework consists of unmanned aerial vehicles(UAVs),unmanned ground vehicles(UGVs),a cloud-based remote control station(RCS).A light-weight message queuing telemetry transport(MQTT)based communication is adopted for facilitating collaboration between autonomous systems.To effectively work under unfavorable disaster conditions,antenna tracker is developed as a tool to extend network coverage to distant areas,and mobile charging points for the UAVs are also implemented.The proposed framework’s performance is evaluated in terms of end-to-end delay and analyzed using architectural analysis and design language(AADL).Experimental measurements and simulation results show that the adopted communication protocol performs more efficiently than other conventional communication protocols,and the implemented UAV control mechanisms are functioning properly.Several scenarios are implemented to validate the overall effectiveness of the proposed framework and demonstrate possible use cases.
基金supported by the Researchers Supporting Project(No.RSP-2021/395)King Saud University,Riyadh,Saudi Arabia.
文摘Industrial IoT(IIoT)aims to enhance services provided by various industries,such as manufacturing and product processing.IIoT suffers from various challenges,and security is one of the key challenge among those challenges.Authentication and access control are two notable challenges for any IIoT based industrial deployment.Any IoT based Industry 4.0 enterprise designs networks between hundreds of tiny devices such as sensors,actuators,fog devices and gateways.Thus,articulating a secure authentication protocol between sensing devices or a sensing device and user devices is an essential step in IoT security.In this paper,first,we present cryptanalysis for the certificate-based scheme proposed for a similar environment by Das et al.and prove that their scheme is vulnerable to various traditional attacks such as device anonymity,MITM,and DoS.We then put forward an interdevice authentication scheme using an ECC(Elliptic Curve Cryptography)that is highly secure and lightweight compared to other existing schemes for a similar environment.Furthermore,we set forth a formal security analysis using the random oracle-based ROR model and informal security analysis over the Doleve-Yao channel.In this paper,we present comparison of the proposed scheme with existing schemes based on communication cost,computation cost and security index to prove that the proposed EBAKE-SE is highly efficient,reliable,and trustworthy compared to other existing schemes for an inter-device authentication.At long last,we present an implementation for the proposed EBAKE-SE using MQTT protocol.
文摘IoT applications are promising for future daily activities;therefore, the number of IoT connected devices is expected to reach billions in the coming few years. However, IoT has different application frameworks. Furthermore, IoT applications require higher security standards. In this work, an IoT application framework is presented with a security embedded structure using the integration between message queue telemetry transport (MQTT) and user-managed access (UMA). The performance analysis of the model is presented. Comparing the model with existing models and different design structures shows that the model presented in this work is promising for a functioning IoT design model with security. The security in the model is a built-in feature in its structure. The model is built on recommended frameworks;therefore, it is ready for integration with other web standards for data sharing, which will help in making IoT applications integrated from different developing parties.
文摘Internet of Things (IoT) environments are being deployed all over the globe. They have the potential to form solutions to applications, from small scale applications to national and international ones. Therefore, scalability, performance, and security form a triangle of requirements that must be carefully set. Furthermore, IoT applications require higher security standards. A previously proposed IoT application framework with a security embedded structure using the integration between message queue telemetry transport (MQTT) and user-managed access (UMA) is analyzed in this work. The performance analysis of the model is presented. Comparing the model with existing models and different design structures shows that the model presented in this work is promising for a functioning IoT design model with security. The results and analysis showed that the built-in security model had performed better than models with other frameworks, especially with fog implementation.