Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly di...Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed.展开更多
Behavioral decision-making at urban intersections is one of the primary difficulties currently impeding the development of intelligent vehicle technology.The problem is that existing decision-making algorithms cannot ...Behavioral decision-making at urban intersections is one of the primary difficulties currently impeding the development of intelligent vehicle technology.The problem is that existing decision-making algorithms cannot effectively deal with complex random scenarios at urban intersections.To deal with this,a deep deterministic policy gradient(DDPG)decision-making algorithm(T-DDPG)based on a time-series Markov decision process(T-MDP)was developed,where the state was extended to collect observations from several consecutive frames.Experiments found that T-DDPG performed better in terms of convergence and generalizability in complex intersection scenarios than a traditional DDPG algorithm.Furthermore,model-agnostic meta-learning(MAML)was incorporated into the T-DDPG algorithm to improve the training method,leading to a decision algorithm(T-MAML-DDPG)based on a secondary gradient.Simulation experiments of intersection scenarios were carried out on the Gym-Carla platform to verify and compare the decision models.The results showed that T-MAML-DDPG was able to easily deal with the random states of complex intersection scenarios,which could improve traffic safety and efficiency.The above decision-making models based on meta-reinforcement learning are significant for enhancing the decision-making ability of intelligent vehicles at urban intersections.展开更多
High-resolution medical images have important medical value,but are difficult to obtain directly.Limited by hardware equipment and patient’s physical condition,the resolution of directly acquired medical images is of...High-resolution medical images have important medical value,but are difficult to obtain directly.Limited by hardware equipment and patient’s physical condition,the resolution of directly acquired medical images is often not high.Therefore,many researchers have thought of using super-resolution algorithms for secondary processing to obtain high-resolution medical images.However,current super-resolution algorithms only work on a single scale,and multiple networks need to be trained when super-resolution images of different scales are needed.This definitely raises the cost of acquiring high-resolution medical images.Thus,we propose a multi-scale superresolution algorithm using meta-learning.The algorithm combines a metalearning approach with an enhanced depth of residual super-resolution network to design a meta-upscale module.The meta-upscale module utilizes the weight prediction property of meta-learning and is able to perform the super-resolution task of medical images at any scale.Meanwhile,we design a non-integer mapping relation for super-resolution,which allows the network to be trained under non-integer magnification requirements.Compared to the state-of-the-art single-image super-resolution algorithm on computed tomography images of the pelvic region.The meta-learning multiscale superresolution algorithm obtained a surpassing of about 2%at a smaller model volume.Testing on different parts proves the high generalizability of our algorithm.Multi-scale super-resolution algorithms using meta-learning can compensate for hardware device defects and reduce secondary harm to patients while obtaining high-resolution medical images.It can be of great use in imaging related fields.展开更多
Unmanned aerial vehicle(UAV)-assisted communications have been considered as a solution of aerial networking in future wireless networks due to its low-cost, high-mobility, and swift features. This paper considers a U...Unmanned aerial vehicle(UAV)-assisted communications have been considered as a solution of aerial networking in future wireless networks due to its low-cost, high-mobility, and swift features. This paper considers a UAV-assisted downlink transmission,where UAVs are deployed as aerial base stations to serve ground users. To maximize the average transmission rate among the ground users, this paper formulates a joint optimization problem of UAV trajectory design and channel selection, which is NP-hard and non-convex. To solve the problem, we propose a multi-agent deep Q-network(MADQN) scheme.Specifically, the agents that the UAVs act as perform actions from their observations distributively and share the same reward. To tackle the tasks where the experience is insufficient, we propose a multi-agent meta reinforcement learning algorithm to fast adapt to the new tasks. By pretraining the tasks with similar distribution, the learning model can acquire general knowledge. Simulation results have indicated the MADQN scheme can achieve higher throughput than fixed allocation. Furthermore, our proposed multiagent meta reinforcement learning algorithm learns the new tasks much faster compared with the MADQN scheme.展开更多
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha...Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines.展开更多
Intrusion detection systems are increasingly using machine learning.While machine learning has shown excellent performance in identifying malicious traffic,it may increase the risk of privacy leakage.This paper focuse...Intrusion detection systems are increasingly using machine learning.While machine learning has shown excellent performance in identifying malicious traffic,it may increase the risk of privacy leakage.This paper focuses on imple-menting a model stealing attack on intrusion detection systems.Existing model stealing attacks are hard to imple-ment in practical network environments,as they either need private data of the victim dataset or frequent access to the victim model.In this paper,we propose a novel solution called Fast Model Stealing Attack(FMSA)to address the problem in the field of model stealing attacks.We also highlight the risks of using ML-NIDS in network security.First,meta-learning frameworks are introduced into the model stealing algorithm to clone the victim model in a black-box state.Then,the number of accesses to the target model is used as an optimization term,resulting in minimal queries to achieve model stealing.Finally,adversarial training is used to simulate the data distribution of the target model and achieve the recovery of privacy data.Through experiments on multiple public datasets,compared to existing state-of-the-art algorithms,FMSA reduces the number of accesses to the target model and improves the accuracy of the clone model on the test dataset to 88.9%and the similarity with the target model to 90.1%.We can demonstrate the successful execution of model stealing attacks on the ML-NIDS system even with protective measures in place to limit the number of anomalous queries.展开更多
Current studies in few-shot semantic segmentation mostly utilize meta-learning frameworks to obtain models that can be generalized to new categories.However,these models trained on base classes with sufficient annotat...Current studies in few-shot semantic segmentation mostly utilize meta-learning frameworks to obtain models that can be generalized to new categories.However,these models trained on base classes with sufficient annotated samples are biased towards these base classes,which results in semantic confusion and ambiguity between base classes and new classes.A strategy is to use an additional base learner to recognize the objects of base classes and then refine the prediction results output by the meta learner.In this way,the interaction between these two learners and the way of combining results from the two learners are important.This paper proposes a new model,namely Distilling Base and Meta(DBAM)network by using self-attention mechanism and contrastive learning to enhance the few-shot segmentation performance.First,the self-attention-based ensemble module(SEM)is proposed to produce a more accurate adjustment factor for improving the fusion of two predictions of the two learners.Second,the prototype feature optimization module(PFOM)is proposed to provide an interaction between the two learners,which enhances the ability to distinguish the base classes from the target class by introducing contrastive learning loss.Extensive experiments have demonstrated that our method improves on the PASCAL-5i under 1-shot and 5-shot settings,respectively.展开更多
The rapid development of deep learning provides great convenience for production and life.However,the massive labels required for training models limits further development.Few-shot learning which can obtain a high-pe...The rapid development of deep learning provides great convenience for production and life.However,the massive labels required for training models limits further development.Few-shot learning which can obtain a high-performance model by learning few samples in new tasks,providing a solution for many scenarios that lack samples.This paper summarizes few-shot learning algorithms in recent years and proposes a taxonomy.Firstly,we introduce the few-shot learning task and its significance.Secondly,according to different implementation strategies,few-shot learning methods in recent years are divided into five categories,including data augmentation-based methods,metric learning-based methods,parameter optimization-based methods,external memory-based methods,and other approaches.Next,We investigate the application of few-shot learning methods and summarize them from three directions,including computer vision,human-machine language interaction,and robot actions.Finally,we analyze the existing few-shot learning methods by comparing evaluation results on mini Image Net,and summarize the whole paper.展开更多
Few-shot learning (FSL) aims to learn novel concepts from very limited examples. However, most FSL methods suffer from the issue of lacking robustness in concept learning. Specifically, existing FSL methods usually ig...Few-shot learning (FSL) aims to learn novel concepts from very limited examples. However, most FSL methods suffer from the issue of lacking robustness in concept learning. Specifically, existing FSL methods usually ignore the diversity of region contents that may contain concept-irrelevant information such as the background, which would introduce bias/noise and degrade the performance of conceptual representation learning. To address the above-mentioned issue, we propose a novel metric-based FSL method termed region-adaptive concept aggregation network or RCA-Net. Specifically, we devise a region-adaptive concept aggregator (RCA) to model the relationships of different regions and capture the conceptual information in different regions, which are then integrated in a weighted average manner to obtain the conceptual representation. Consequently, robust concept learning can be achieved by focusing more on the concept-relevant information and less on the conceptual-irrelevant information. We perform extensive experiments on three popular visual recognition benchmarks to demonstrate the superiority of RCA-Net for robust few-shot learning. In particular, on the Caltech-UCSD Birds-200-2011 (CUB200) dataset, the proposed RCA-Net significantly improves 1-shot accuracy from 74.76% to 78.03% and 5-shot accuracy from 86.84% to 89.83% compared with the most competitive counterpart.展开更多
基金Researchers Supporting Project Number(RSPD2024R 553),King Saud University,Riyadh,Saudi Arabia.
文摘Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed.
基金supported in part by the Beijing Municipal Science and Technology Project(No.Z191100007419010)Automobile Industry Joint Fund(No.U1764261)of the National Natural Science Foundation of China+1 种基金Shandong Key R&D Program(No.2020CXGC010118)Key Laboratory for New Technology Application of Road Conveyance of Jiangsu Province(No.BM20082061706)。
文摘Behavioral decision-making at urban intersections is one of the primary difficulties currently impeding the development of intelligent vehicle technology.The problem is that existing decision-making algorithms cannot effectively deal with complex random scenarios at urban intersections.To deal with this,a deep deterministic policy gradient(DDPG)decision-making algorithm(T-DDPG)based on a time-series Markov decision process(T-MDP)was developed,where the state was extended to collect observations from several consecutive frames.Experiments found that T-DDPG performed better in terms of convergence and generalizability in complex intersection scenarios than a traditional DDPG algorithm.Furthermore,model-agnostic meta-learning(MAML)was incorporated into the T-DDPG algorithm to improve the training method,leading to a decision algorithm(T-MAML-DDPG)based on a secondary gradient.Simulation experiments of intersection scenarios were carried out on the Gym-Carla platform to verify and compare the decision models.The results showed that T-MAML-DDPG was able to easily deal with the random states of complex intersection scenarios,which could improve traffic safety and efficiency.The above decision-making models based on meta-reinforcement learning are significant for enhancing the decision-making ability of intelligent vehicles at urban intersections.
基金supported by the National Science Foundation for Young Scientists of China(Grant No.61806060)2019-2021,and the Natural Science Foundation of Heilongjiang Province(LH2019F024)+1 种基金China,2019-2021.We also acknowledge support fromthe Basic andApplied Basic Research Foundation of Guangdong Province(2021A1515220140)the Youth Innovation Project of Sun Yat-sen University Cancer Center(QNYCPY32).
文摘High-resolution medical images have important medical value,but are difficult to obtain directly.Limited by hardware equipment and patient’s physical condition,the resolution of directly acquired medical images is often not high.Therefore,many researchers have thought of using super-resolution algorithms for secondary processing to obtain high-resolution medical images.However,current super-resolution algorithms only work on a single scale,and multiple networks need to be trained when super-resolution images of different scales are needed.This definitely raises the cost of acquiring high-resolution medical images.Thus,we propose a multi-scale superresolution algorithm using meta-learning.The algorithm combines a metalearning approach with an enhanced depth of residual super-resolution network to design a meta-upscale module.The meta-upscale module utilizes the weight prediction property of meta-learning and is able to perform the super-resolution task of medical images at any scale.Meanwhile,we design a non-integer mapping relation for super-resolution,which allows the network to be trained under non-integer magnification requirements.Compared to the state-of-the-art single-image super-resolution algorithm on computed tomography images of the pelvic region.The meta-learning multiscale superresolution algorithm obtained a surpassing of about 2%at a smaller model volume.Testing on different parts proves the high generalizability of our algorithm.Multi-scale super-resolution algorithms using meta-learning can compensate for hardware device defects and reduce secondary harm to patients while obtaining high-resolution medical images.It can be of great use in imaging related fields.
基金supported in part by the National Nature Science Foundation of China under Grant 62131005 and U19B2014in part by the National Key Research and Development Program of China under Grant 254。
文摘Unmanned aerial vehicle(UAV)-assisted communications have been considered as a solution of aerial networking in future wireless networks due to its low-cost, high-mobility, and swift features. This paper considers a UAV-assisted downlink transmission,where UAVs are deployed as aerial base stations to serve ground users. To maximize the average transmission rate among the ground users, this paper formulates a joint optimization problem of UAV trajectory design and channel selection, which is NP-hard and non-convex. To solve the problem, we propose a multi-agent deep Q-network(MADQN) scheme.Specifically, the agents that the UAVs act as perform actions from their observations distributively and share the same reward. To tackle the tasks where the experience is insufficient, we propose a multi-agent meta reinforcement learning algorithm to fast adapt to the new tasks. By pretraining the tasks with similar distribution, the learning model can acquire general knowledge. Simulation results have indicated the MADQN scheme can achieve higher throughput than fixed allocation. Furthermore, our proposed multiagent meta reinforcement learning algorithm learns the new tasks much faster compared with the MADQN scheme.
基金supported by STI 2030-Major Projects 2021ZD0200400National Natural Science Foundation of China(62276233 and 62072405)Key Research Project of Zhejiang Province(2023C01048).
文摘Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines.
基金supported by Grant Nos.U22A2036,HIT.OCEF.2021007,2020YFB1406902,2020B0101360001.
文摘Intrusion detection systems are increasingly using machine learning.While machine learning has shown excellent performance in identifying malicious traffic,it may increase the risk of privacy leakage.This paper focuses on imple-menting a model stealing attack on intrusion detection systems.Existing model stealing attacks are hard to imple-ment in practical network environments,as they either need private data of the victim dataset or frequent access to the victim model.In this paper,we propose a novel solution called Fast Model Stealing Attack(FMSA)to address the problem in the field of model stealing attacks.We also highlight the risks of using ML-NIDS in network security.First,meta-learning frameworks are introduced into the model stealing algorithm to clone the victim model in a black-box state.Then,the number of accesses to the target model is used as an optimization term,resulting in minimal queries to achieve model stealing.Finally,adversarial training is used to simulate the data distribution of the target model and achieve the recovery of privacy data.Through experiments on multiple public datasets,compared to existing state-of-the-art algorithms,FMSA reduces the number of accesses to the target model and improves the accuracy of the clone model on the test dataset to 88.9%and the similarity with the target model to 90.1%.We can demonstrate the successful execution of model stealing attacks on the ML-NIDS system even with protective measures in place to limit the number of anomalous queries.
文摘Current studies in few-shot semantic segmentation mostly utilize meta-learning frameworks to obtain models that can be generalized to new categories.However,these models trained on base classes with sufficient annotated samples are biased towards these base classes,which results in semantic confusion and ambiguity between base classes and new classes.A strategy is to use an additional base learner to recognize the objects of base classes and then refine the prediction results output by the meta learner.In this way,the interaction between these two learners and the way of combining results from the two learners are important.This paper proposes a new model,namely Distilling Base and Meta(DBAM)network by using self-attention mechanism and contrastive learning to enhance the few-shot segmentation performance.First,the self-attention-based ensemble module(SEM)is proposed to produce a more accurate adjustment factor for improving the fusion of two predictions of the two learners.Second,the prototype feature optimization module(PFOM)is proposed to provide an interaction between the two learners,which enhances the ability to distinguish the base classes from the target class by introducing contrastive learning loss.Extensive experiments have demonstrated that our method improves on the PASCAL-5i under 1-shot and 5-shot settings,respectively.
基金supported by the National Key R&D Program of China(Grant No.2019YFB2102400)the National Natural Science Foundation of China(Grant No.92067204)。
文摘The rapid development of deep learning provides great convenience for production and life.However,the massive labels required for training models limits further development.Few-shot learning which can obtain a high-performance model by learning few samples in new tasks,providing a solution for many scenarios that lack samples.This paper summarizes few-shot learning algorithms in recent years and proposes a taxonomy.Firstly,we introduce the few-shot learning task and its significance.Secondly,according to different implementation strategies,few-shot learning methods in recent years are divided into five categories,including data augmentation-based methods,metric learning-based methods,parameter optimization-based methods,external memory-based methods,and other approaches.Next,We investigate the application of few-shot learning methods and summarize them from three directions,including computer vision,human-machine language interaction,and robot actions.Finally,we analyze the existing few-shot learning methods by comparing evaluation results on mini Image Net,and summarize the whole paper.
基金supported by National Natural Science Foundation of China(No.62002090)Major Science and Technology Innovation 2030“New Generation Artificial Intelligence”Key Project(No.2021ZD0111700)Special Fund of Hubei Luojia Laboratory,China(No.220100014).
文摘Few-shot learning (FSL) aims to learn novel concepts from very limited examples. However, most FSL methods suffer from the issue of lacking robustness in concept learning. Specifically, existing FSL methods usually ignore the diversity of region contents that may contain concept-irrelevant information such as the background, which would introduce bias/noise and degrade the performance of conceptual representation learning. To address the above-mentioned issue, we propose a novel metric-based FSL method termed region-adaptive concept aggregation network or RCA-Net. Specifically, we devise a region-adaptive concept aggregator (RCA) to model the relationships of different regions and capture the conceptual information in different regions, which are then integrated in a weighted average manner to obtain the conceptual representation. Consequently, robust concept learning can be achieved by focusing more on the concept-relevant information and less on the conceptual-irrelevant information. We perform extensive experiments on three popular visual recognition benchmarks to demonstrate the superiority of RCA-Net for robust few-shot learning. In particular, on the Caltech-UCSD Birds-200-2011 (CUB200) dataset, the proposed RCA-Net significantly improves 1-shot accuracy from 74.76% to 78.03% and 5-shot accuracy from 86.84% to 89.83% compared with the most competitive counterpart.