Pancreatic cancer(PanCa)is a catastrophic disease,being third lethal in both the genders around the globe.The possible reasons are extreme disease invasiveness,highly fibrotic and desmoplastic stroma,dearth of confirm...Pancreatic cancer(PanCa)is a catastrophic disease,being third lethal in both the genders around the globe.The possible reasons are extreme disease invasiveness,highly fibrotic and desmoplastic stroma,dearth of confirmatory diagnostic approaches and resistance to chemotherapeutics.This inimitable tumor microenvironment(TME)or desmoplasia with excessive extracellular matrix accumulation,create an extremely hypovascular,hypoxic and nutrient-deficient zone inside the tumor.To survive,grow and proliferate in such tough TME,pancreatic tumor and stromal cells transform their metabolism.Transformed glucose,glu-tamine,fat,nucleotide metabolism and inter-metabolite communication between tumor and TME in synergism,impart therapy resistance,and immunosuppression in PanCa.Thus,a finer knowledge of altered metabolism would uncover its metabolic susceptibilities.These unique metabolic targets may help to device novel diagnostic/prognostic markers and therapeutic strategies for better management of PanCa.In this review,we sum up reshaped metabolic pathways in PanCa to formulate detection and remedial strategies of this devastating disease.展开更多
The theory, methodologies, and case studies in the field of industrial symbiosis have been developing for nearly 30 years. In this paper, we trace the development history of industrial symbiosis, and review its curren...The theory, methodologies, and case studies in the field of industrial symbiosis have been developing for nearly 30 years. In this paper, we trace the development history of industrial symbiosis, and review its current theoretical and methodological bases, as well as trends in current research. Based on the research gaps that we identify, we provide suggestions to guide the future development of this approach to permit more comprehensive analyses. Our theoretical review includes key definitions, a classification system, and a description of the formation and development mechanisms. We discuss methodological studies from the perspective of individual industrial metabolic processes and network analysis. Analyzing specific metabolic processes can help to characterize the exchanges of materials and energy, and to reveal the ecological performance and economic benefits of the symbiosis. Network analysis methods are increasingly being used to analyze both the structural and functional characteristics of a system. Our suggestions for future research focus on three aspects: how to quantitatively classify industrial symbiosis systems, monitor the dynamics of a developing industrial symbiosis system, and analyze its internal attributes more deeply.展开更多
基金Supported by the Department of Biotechnology,Government of India,Ramalingaswami Re-entry Fellowship,No.RLS/BT/Reentry/05/2012and Department of Higher,Education,Science&Technology and Biotechnology,Government of West Bengal,India,No.BT/P/Budget/RD-37/2016.
文摘Pancreatic cancer(PanCa)is a catastrophic disease,being third lethal in both the genders around the globe.The possible reasons are extreme disease invasiveness,highly fibrotic and desmoplastic stroma,dearth of confirmatory diagnostic approaches and resistance to chemotherapeutics.This inimitable tumor microenvironment(TME)or desmoplasia with excessive extracellular matrix accumulation,create an extremely hypovascular,hypoxic and nutrient-deficient zone inside the tumor.To survive,grow and proliferate in such tough TME,pancreatic tumor and stromal cells transform their metabolism.Transformed glucose,glu-tamine,fat,nucleotide metabolism and inter-metabolite communication between tumor and TME in synergism,impart therapy resistance,and immunosuppression in PanCa.Thus,a finer knowledge of altered metabolism would uncover its metabolic susceptibilities.These unique metabolic targets may help to device novel diagnostic/prognostic markers and therapeutic strategies for better management of PanCa.In this review,we sum up reshaped metabolic pathways in PanCa to formulate detection and remedial strategies of this devastating disease.
文摘The theory, methodologies, and case studies in the field of industrial symbiosis have been developing for nearly 30 years. In this paper, we trace the development history of industrial symbiosis, and review its current theoretical and methodological bases, as well as trends in current research. Based on the research gaps that we identify, we provide suggestions to guide the future development of this approach to permit more comprehensive analyses. Our theoretical review includes key definitions, a classification system, and a description of the formation and development mechanisms. We discuss methodological studies from the perspective of individual industrial metabolic processes and network analysis. Analyzing specific metabolic processes can help to characterize the exchanges of materials and energy, and to reveal the ecological performance and economic benefits of the symbiosis. Network analysis methods are increasingly being used to analyze both the structural and functional characteristics of a system. Our suggestions for future research focus on three aspects: how to quantitatively classify industrial symbiosis systems, monitor the dynamics of a developing industrial symbiosis system, and analyze its internal attributes more deeply.