期刊文献+
共找到6,443篇文章
< 1 2 250 >
每页显示 20 50 100
Regulating zinc ion transport behavior and solvated structure towards stable aqueous Zn metal batteries
1
作者 Qiang Ma Aoen Ma +6 位作者 Shanguang Lv Bowen Qin Yali Xu Xianxiang Zeng Wei Ling Yuan Liu Xiongwei Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期609-626,I0015,共19页
Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and th... Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and the incompatibility between electrode and electrolytes lead to the deterioration of electrochemical performance of AZMBs during the cycling.The critical point to achieve the stable cycling of AZMBs is to properly regulate the zinc ion solvated structure and transfer behavior between metallic Zn anode and electrolyte.In recent years,numerous achievements have been made to resolve the formation of Zn dendrite and interface incompatible issues faced by AZMBs via optimizing the sheath structure and transport capability of zinc ions at electrode-electrolyte interface.In this review,the challenges for metallic Zn anode and electrode-electrolyte interface in AZMBs including dendrite formation and interface characteristics are presented.Following the influences of different strategies involving designing advanced electrode structu re,artificial solid electrolyte interphase(SEI)on Zn anode and electrolyte engineering to regulate zinc ion solvated sheath structure and transport behavior are summarized and discussed.Finally,the perspectives for the future development of design strategies for dendrite-free Zn metal anode and long lifespan AZMBs are also given. 展开更多
关键词 aqueous Zn metal batteries Zn metal anode Transport behavior Solvated structure Dendrite-free
下载PDF
Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction
2
作者 Hongxing Yuan Wei Gao +2 位作者 Xinhao Wan Jianqi Ye Dan Wen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期557-564,I0013,共9页
The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received partic... The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts. 展开更多
关键词 Noble metal aerogels Surface electronic structure ORR ELECTROCATALYST Organic ligands
下载PDF
From VIB‑to VB‑Group Transition Metal Disulfides:Structure Engineering Modulation for Superior Electromagnetic Wave Absorption
3
作者 Junye Cheng Yongheng Jin +10 位作者 Jinghan Zhao Qi Jing Bailong Gu Jialiang Wei Shenghui Yi Mingming Li Wanli Nie Qinghua Qin Deqing Zhang Guangping Zheng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期218-257,共40页
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field... The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance. 展开更多
关键词 Transition metal disulfides Electromagnetic wave absorption Impedance matching structure engineering modulation
下载PDF
Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to Anode-Free Structures
4
作者 Xianfu Zhang Long Zhang +2 位作者 Xinyuan Jia Wen Song Yongchang Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期305-349,共45页
Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low re... Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented. 展开更多
关键词 Aqueous zinc metal batteries Zinc anodes High zinc utilization Depth of discharge Anode-free structures
下载PDF
The Tension Cosmology, Largest Cosmic Structures and Explosions of Supernovae from SST
5
作者 Sylwester Kornowski 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1029-1044,共16页
Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter lea... Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic. 展开更多
关键词 Scale-Symmetric Theory Tension Cosmology Coupling Constants Parameters σ8 and S8 Largest Cosmic structures Dark Energy Supernova explosion Cyclic Universe
下载PDF
Nacre-inspired interface structure design of polymer bonded explosives toward significantly enhanced mechanical performance
6
作者 Peng Wang You-long Chen +6 位作者 Li Meng Yin-shuang Sun Yu Dai Xin Li Jie Chen Zhi-jian Yang Guan-song He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期83-92,共10页
Realizing effective enhancement to the structure of interface region between explosive crystals and polymer binder plays a key role in improving the mechanical properties of the current polymer bonded explosives(PBXs)... Realizing effective enhancement to the structure of interface region between explosive crystals and polymer binder plays a key role in improving the mechanical properties of the current polymer bonded explosives(PBXs).Herein,inspired by the structure of natural nacre which possesses outstanding mechanical performance,a kind of nacre-like structural layer is constructed in the interface region of PBXs composites,making use of two-dimensional graphene sheets and one-dimensional bio-macromolecules of cellulose as inorganic and organic building blocks,respectively.Our results reveal that the constructed nacre-like structural layer can effectively improve the interfacial strength and then endow the PBXs composites with significantly enhanced mechanical properties involving of creep resistance,Brazilian strength and fracture toughness,demonstrating the obvious advantage of such bioinspired interface structure design strategy.In addition,the thermal conduction performance of PBXs composites also exhibits noticeable enhancement due to the remarkable phonon transport capability endowed by the asdesigned nacre-like structural layer.We believe this work provides a novel design route to conquer the issue of weak interfacial strength in PBXs composites and greatly increase the comprehensive properties for better meeting the higher requirements proposed to the explosive part of weapon equipment in new era. 展开更多
关键词 Polymer bonded explosives Nacre-like structural layer GRAPHENE CELLULOSE Mechanical properties
下载PDF
Fine structure characterization of an explosively-welded GH3535/316H bimetallic plate interface
7
作者 Jia Xiao Ming Li +6 位作者 Jian-ping Liang Li Jiang De-jun Wang Xiang-xi Ye Ze-zhong Chen Na-xiu Wang Zhi-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第11期1811-1820,共10页
An explosion-welded technology was induced to manufacture the GH3535/316H bimetallic plates to provide a more cost-effective structural material for ultrahigh temperature,molten salt thermal storage systems.The micros... An explosion-welded technology was induced to manufacture the GH3535/316H bimetallic plates to provide a more cost-effective structural material for ultrahigh temperature,molten salt thermal storage systems.The microstructure of the bonding interfaces were extensively investigated by scanning electron microscopy,energy dispersive spectrometry,and an electron probe microanalyzer.The bonding interface possessed a periodic,wavy morphology and was adorned by peninsula-or island-like transition zones.At higher magnification,a matrix recrystallization region,fine grain region,columnar grain region,equiaxed grain region,and shrinkage porosity were observed in the transition zones and surrounding area.Electron backscattered diffraction demonstrated that the strain in the recrystallization region of the GH3535 matrix and transition zone was less than the substrate.Strain concentration occurred at the interface and the solidification defects in the transition zone.The dislocation substructure in 316H near the interface was characterized by electron channeling contrast imaging.A dislocation network was formed in the grains of 316H.The microhardness decreased as the distance from the welding interface increased and the lowest hardness was inside the transition zone. 展开更多
关键词 GH3535/316H bimetallic plate ultrahigh temperature molten salt explosive welding interface structure dislocation substructure
下载PDF
Suppression of Co(Ⅱ)ion deposition and hazards:Regulation of SEI film composition and structure
8
作者 Jiaqi Zhan Mingzhu Liu +4 位作者 Yutian Xie Jiarong He Hebing Zhou Lidan Xing Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期259-265,I0007,共8页
Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering th... Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes. 展开更多
关键词 Lithium-ion batteries Transition metal ions SEI film Composition and structure
下载PDF
Tailoring local structures of atomically dispersed copper sites for highly selective CO_(2) electroreduction
9
作者 Kyung‐Jong Noh Byoung Joon Park +5 位作者 Ying Wang Yejung Choi Sang‐Hoon You Yong‐Tae Kim Kug‐Seung Lee Jeong Woo Han 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期79-90,共12页
Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construc... Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construction of optimal local electronic structures for nitrogen‐coordinated Cu sites(Cu–N_(4))on carbon remains challenging.Here,we synthesized the Cu–N–C catalysts with atomically‐dispersed edge‐hosted Cu–N_(4) sites(Cu–N_(4)C_(8))located in a micropore between two graphitic sheets via a facile method to control the concentration of metal precursor.Edge‐hosted Cu–N_(4)C_(8) catalysts outperformed the previously reported M–N–C catalysts for CO_(2)‐to‐CO conversion,achieving a maximum CO Faradaic efficiency(FECO)of 96%,a CO current density of–8.97 mA cm^(–2) at–0.8 V versus reversible hydrogen electrode(RHE),and over FECO of 90%from–0.6 to–1.0 V versus RHE.Computational studies revealed that the micropore of the graphitic layer in edge‐hosted Cu–N_(4)C_(8) sites causes the d‐orbital energy level of the Cu atom to shift upward,which in return decreases the occupancy of antibonding states in the*COOH binding.This research suggests new insights into tailoring the locally coordinated structure of the electrocatalyst at the atomic scale to achieve highly selective electrocatalytic reactions. 展开更多
关键词 atomic local structure density functional theory electrochemical CO_(2)reduction metal nitrogen‐doped carbon single‐atom catalyst
下载PDF
Immobilization of Oxyanions on the Reconstructed Heterostructure Evolved from a Bimetallic Oxysulfide for the Promotion of Oxygen Evolution Reaction 被引量:1
10
作者 Kai Yu Hongyuan Yang +6 位作者 Hao Zhang Hui Huang Zhaowu Wang Zhenhui Kang Yang Liu Prashanth W.Menezes Ziliang Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期547-564,共18页
Efficient and durable oxygen evolution reaction(OER)requires the electrocatalyst to bear abundant active sites,optimized electronic structure as well as robust component and mechanical stability.Herein,a bimetallic la... Efficient and durable oxygen evolution reaction(OER)requires the electrocatalyst to bear abundant active sites,optimized electronic structure as well as robust component and mechanical stability.Herein,a bimetallic lanthanum-nickel oxysulfide with rich oxygen vacancies based on the La_(2)O_(2)S prototype is fabricated as a binder-free precatalyst for alkaline OER.The combination of advanced in situ and ex situ characterizations with theoretical calculation uncovers the synergistic effect among La,Ni,O,and S species during OER,which assures the adsorption and stabilization of the oxyanion SO_(4)^(2-)onto the surface of the deeply reconstructed porous heterostructure composed of confining Ni OOH nanodomains by La(OH)_3 barrier.Such coupling,confinement,porosity and immobilization enable notable improvement in active site accessibility,phase stability,mass diffusion capability and the intrinsic Gibbs free energy of oxygen-containing intermediates.The optimized electrocatalyst delivers exceptional alkaline OER activity and durability,outperforming most of the Ni-based benchmark OER electrocatalysts. 展开更多
关键词 Lanthanum-nickel oxysulfide Rare earth metal Immobilization of oxyanions structural reconstruction Oxygen evolution catalysis
下载PDF
Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe_(2)
11
作者 张美光 陈磊 +4 位作者 冯龙 拓换换 张云 魏群 李培芳 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期349-354,共6页
Motivated by the recent experimental work,the pressure-induced structural transition of well-known two-dimensional(2D)1T-Hf Te_(2)was investigated up to 50 GPa through the advanced CALYPSO structure search technique c... Motivated by the recent experimental work,the pressure-induced structural transition of well-known two-dimensional(2D)1T-Hf Te_(2)was investigated up to 50 GPa through the advanced CALYPSO structure search technique combined with the first-principles calculations.Our calculations suggested that the 1T-Hf Te_(2)will first transform to C2/m phase at 3.6 GPa with a volume reduction of 7.6%and then to P62m phase at 9.6 GPa with a volume collapse of 4.6%.The occurrences of 3D C2/m and P62m phases mainly originated from the enhanced Te-Te interlayer coupling and the drastic distortions of Hf-Te polyhedrons in P3m1 phase under compression.Concomitantly,the coordination number of Hf atoms increased from six in P3m1 to eight in C2/m and eventually to nine in P62m at elevated pressure.The metallic and semimetallic nature of C2/m and P62m phases were characterized,and the evidence of the reinforced covalent interactions of Te-Hf and Te-Te orbitals in these two novel high-pressure phases were manifested by the atom-projected electronic DOS and Bader charge. 展开更多
关键词 transition metal dichalcogenides pressure-induced phase transition crystal structure electronic structure
下载PDF
Electrode structure enabling dendrite inhibition for high cycle stability quasi-solid-state lithium metal batteries
12
作者 Kaiming Wang Ao Yu +7 位作者 Zhiyi Zhou Fei Shen Manni Li Liang Zhang Weichang Guo Yifei Chen Le Shi Xiaogang Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期232-241,共10页
Lithium(Li)metal batteries(LMBs)are widely regarded as the ultimate choice for the next generation of high-energy–density batteries.However,the uncontrollable growth of Li dendrites formed by inhomogeneous deposition... Lithium(Li)metal batteries(LMBs)are widely regarded as the ultimate choice for the next generation of high-energy–density batteries.However,the uncontrollable growth of Li dendrites formed by inhomogeneous deposition seriously hinders its commercialization.Although many studies have achieved significant results in inhibiting the formation of Li dendrites,it is still impossible to eradicate them completely.Therefore,regulating the deposition behavior,such as the growth direction of unevenly deposited Li,is preferable to unilaterally suppressing them in some cases.Here we report a structured anode that can confine the deposited Li within holes and tune it to become vertical-up/horizontal-centripetal mixed growth mode by optimizing the electric field/Li^(+)concentration gradient.The Li^(+) adsorbed by the poly(amic acid)(PAA)insulating layer coated on the anode surface can form the Li^(+)concentration gradient pointing to the center of the hole.Combined with the special electric field formed by the hole structure,it is favorable for the Li^(+)to move into the vertically arrayed holes and simultaneously deposit on the bottom and walls.Furthermore,both in-situ and ex-situ observations confirm that the growth mode is changed and the Li deposition morphology is denser,which can greatly delay capacity fading and prolong cycle life in both liquid and quasi-solid-state LMBs.All the results show that the novel anode provides a new perspective for deep research into solid-state LMBs. 展开更多
关键词 Lithium metal batteries structured anode Deposition behavior Quasi-solid-state
下载PDF
Rationalizing Na-ion solvation structure by weakening carbonate solvent coordination ability for high-voltage sodium metal batteries
13
作者 Yan Deng Shuai Feng +8 位作者 Zhiwen Deng Ye Jia Xuemei Zhang Changhaoyue Xu Sicheng Miao Meng Yao Kaipeng Wu Yun Zhang Wenlong Cai 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期105-113,I0004,共10页
Commercial carbonate-based electrolytes feature highly reactive activities with alkali metals,yielding low Coulombic efficiencies and poor cycle life in lithium metal batteries,which possess much higher chemical activ... Commercial carbonate-based electrolytes feature highly reactive activities with alkali metals,yielding low Coulombic efficiencies and poor cycle life in lithium metal batteries,which possess much higher chemical activity in the rising star sodium metal batteries.To be motivated,we have proposed that decreasing the solvent solvation ability in carbonate-based electrolytes stepwise could enable longterm stable cycling of high-voltage sodium metal batteries.As the solvation capacity reduces,more anions are enticed into the solvation sheath of Na^(+),resulting in the formation of the more desirable interphase layers on the surface of the anode and the cathode.The inorganic-dominated interphases allow highly efficient Na^(+)deposition/stripping processes with a lower rate of dead sodium generation,as well as maintain a stable structure of the high-voltage cathode material.Specifically,the assembled Na||Na_(3)V_(2)(PO_(4))_(2)F_(3)battery exhibits an accelerated ion diffusion kinetics and achieves a higher capacity retention of 85.9%with during the consecutive 200 cycles under the high voltage of 4.5 V.It is anticipated that the tactics we have proposed could be applicable in other secondary metal battery systems as well. 展开更多
关键词 ELECTROLYTE Solvation structure Interfacial chemistry Sodium metal anode HIGH-VOLTAGE
下载PDF
Inverse-opal structured TiO_(2) regulating electrodeposition behavior to enable stable lithium metal electrodes
14
作者 Xuewen Wu Shaolun Cui +3 位作者 Minfei Fei Sheng Liu Xueping Gao Guoran Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1664-1672,共9页
Lithium metal anode is almost the ultimate choice for high-energy density rechargeable batteries, but its uneven electrochemical dissolution-deposition characteristics lead to poor cycle stability and lithium dendrite... Lithium metal anode is almost the ultimate choice for high-energy density rechargeable batteries, but its uneven electrochemical dissolution-deposition characteristics lead to poor cycle stability and lithium dendrites safety problems. The fundamental solution to the problems is to interfere electrodeposition process of lithium metal so that it can be carried out reversibly and stably. In this work, an inverse-opal structured TiO2membrane with a thickness of only ~1 μm is designed to regulate the electrodeposition behavior of lithium metal, in which the ordered channels homogenize mass transfer process, the anatase TiO_(2)walls of the ion channels reduce desolvation barrier of solvated lithium-ions, and the spherical cavities with a diameter of ~300 nm confine migration of the adsorbed lithium atoms during electrocrystallization to diminish overpotential of lithium. These systematic effects cover and essentially change the whole process of electrodeposition of lithium metal and eliminate the possibility of lithium dendrite formation. The as-obtained lithium metal electrode delivers a Coulombic efficiency of 99.86% in the 100th cycle, and maintains a low deposition overpotential of 0.01 V for 800 h. 展开更多
关键词 Lithium metal anode Inverse-opal structure TiO2 ELECTRODEPOSITION Lithium-sulfur battery
下载PDF
Dependence of lithium metal battery performances on inherent separator porous structure regulation
15
作者 Lei Ding Dandan Li +7 位作者 Lingyang Liu Pengfang Zhang Fanghui Du Chao Wang Daoxin Zhang Shuo Zhang Sihang Zhang Feng Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期436-447,共12页
Boosting of rechargeable lithium metal batteries(LMBs) holds challenges because of lithium dendrites germination and high-reactive surface feature.Separators may experience structure-determined chemical deterioration ... Boosting of rechargeable lithium metal batteries(LMBs) holds challenges because of lithium dendrites germination and high-reactive surface feature.Separators may experience structure-determined chemical deterioration and worsen Li plating-stripping behaviors when smoothly shifting from lithium-ion batteries(LIBs) to LMBs.This study precisely regulations the crystal structure of β-polypropylene and separator porous construction to investigate the intrinsic porous structure and mechanical properties determined electrochemical performances and cycling durability of LMBs.Crystal structure characterizations,porous structure analyses,and electrochemical cycling tests uncover appropriate annealing thermal stimulation concentrates β-lamellae thickness and enhances lamellae thermal stability by rearranging molecular chain in inferior β-lamellae,maximally homogenizing biaxial tensile deformation and resultant porous constructions.These even pores with high connectivity lower ion migration barriers,alleviate heterogeneous Li^(+) flux dispersion,stabilize reversible Li plating-stripping behaviors,and hinder coursing and branching of Li dendrites,endowing steady cell cycling durability,especially at higher currents due to the highlighted uncontrollable cumulation of dead Li,which offers new insights for the current pursuit of high-power density battery and fast charging technology.The suggested separator structure-chemical nature functions in ensuring cyclic cell stability and builds reliable relationships between separator structure design and practical LMBs applications. 展开更多
关键词 Lithium metal battery Polyolefin separator Porous structure design Lithium dendrite regulation Cycling stability
下载PDF
Probing electronic structures of transition metal complexes using electron paramagnetic resonance spectroscopy
16
作者 Shengfa Ye 《Magnetic Resonance Letters》 2023年第1期43-60,I0003,共19页
Electron paramagnetic resonance(EPR)or electron spin resonance(ESR)has been widely employed to characterize transition metal complexes.However,because of the high degree of complexity of transition metal EPR spectra,h... Electron paramagnetic resonance(EPR)or electron spin resonance(ESR)has been widely employed to characterize transition metal complexes.However,because of the high degree of complexity of transition metal EPR spectra,how to extract the underlying electronicstructure information inevitably poses a major challenge to beginners,in particular for systems with S>1/2.In fact,the physical principles of transition metal EPR have long been well-established and since 1970s a series of dedicated voluminous monographs have been published already.Not surprisingly,they are not appropriate stating points for novices to grasp a panorama of the profound theory prior to scrutinizing in-depth references.The present review aims to fill this gap to provide a perspective of transition metal EPR and unveil some peculiar subtleties thereof on the basis of our recent work. 展开更多
关键词 EPR Electronic structures Transition metal complexes Spin Hamiltonian
下载PDF
Structure Analyses of the Explosive Extratropical Cyclone:A Case Study over the Northwestern Pacific in March 2007 被引量:2
17
作者 WANG Shuai FU Gang PANG Huaji 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第6期933-944,共12页
The synoptic situation and mesoscale structure of an explosive extratropical cyclone over the Northwestern Pacific in March 2007 are investigated through weather station observations and data reanalysis. The cyclone i... The synoptic situation and mesoscale structure of an explosive extratropical cyclone over the Northwestern Pacific in March 2007 are investigated through weather station observations and data reanalysis. The cyclone is located beneath the poleward side of the exit of a 200 hPa jet, which is a strong divergent region aloft. At mid-level, the cyclone lies on the downstream side of a well-developed trough, where a strong ascending motion frequently occurs. Cross-section analyses with weather station data show that the cyclone has a warm and moist core. A ‘nose' of the cold front, which is characterized by a low-level protruding structure in the equivalent potential temperature field, forms when the cyclone moves offshore. This ‘nose' structure is hypothesized to have been caused by the heating effect of the Kuroshio Current. Two low-level jet streams are also identified on the western and eastern sides of the cold front. The western jet conveys cold and dry air at 800–900 hPa. The wind in the northern part is northeasterly, and the wind in the southern part is northwesterly. By contrast, the eastern jet carries warm and moist air into the cyclone system, ascending northward from 900 hPa to 600–700 hPa. The southern part is dominated by the southerly wind, and the wind in the northern part is southwesterly. The eastern and western jets significantly increase the air temperature and moisture contrast in the vicinity of the cold front. This increase could play an important role in improving the rapid cyclogenesis process. 展开更多
关键词 explosive extratropical cyclone meteorological BOMB rapid CYCLOGENESIS MESOSCALE structure NORTHWESTERN Pacific
下载PDF
Reaction degree of composition B explosive with multi-layered compound structure protection subjected to detonation loading 被引量:4
18
作者 Jia-yun Liu Yong-xiang Dong +3 位作者 Xuan-yi An Ping Ye Qi-tian Sun Qian Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期315-326,共12页
The explosive reaction degree and protection from explosions are concerns in the military field.In this work,the reaction degree of the composition B explosive was investigated experimentally.Multi-layered compound st... The explosive reaction degree and protection from explosions are concerns in the military field.In this work,the reaction degree of the composition B explosive was investigated experimentally.Multi-layered compound structures were used as barriers to weaken the blast loads.A comprehensive experiment using a high-speed camera and image processing techniques,side witness plates,and bottom witness plates was presented.Using the experimental fragment velocities,fragment piercing patterns,and damage characteristics,the reaction degree of the explosive impeded by different multi-layered compound structures could be precisely differentiated.Reaction parameters of the explosive obstructed by compound structures were obtained by theoretical analysis and numerical simulations.Unlike the common method in which the explosive reaction degree is only distinguished based on the initial pressure amplitude transmitted into the explosive,a following shock wave reflected from the side steel casing was also considered.Different detonation growth paths in the explosive formed.Therefore,all these shock wave propagation characteristics must be considered to analyze the explosive response impeded by compound structures. 展开更多
关键词 Reaction degree explosive protection Compound structure Comprehensive experiment
下载PDF
Design and test of a protective structure for the double vertical explosive welding of large titanium/steel plate 被引量:9
19
作者 史长根 孙泽瑞 +2 位作者 房中行 赵林升 史和生 《China Welding》 EI CAS 2019年第3期7-14,共8页
A comprehensive protective structure with rigidity and flexibility was put forward and designed in view of the quality and safety problems for the double vertical explosive welding of large titanium/steel cladding pla... A comprehensive protective structure with rigidity and flexibility was put forward and designed in view of the quality and safety problems for the double vertical explosive welding of large titanium/steel cladding plate.The movement speed and displacement of the protective structure was calculated by establishing its physics model.The dynamics and stabilization properties were analyzed,and the protective structure parameters were optimized and devised.The comprehensive protective structure,which is composed of rigidity unit and flexibility wall,can bear the impact of detonation wave and the high-speed movement of the cladding plate.There are no damage and deformation in the protective structure and the cladding plate.The protective structure can be used many times.The bonding rate of the Ti/steel plate obtained was nearly 100%,and there is no deformation,surface cracks,and big wave and micro-defects.Therefore,the protective problems of the double vertical explosive welding can be solved effectively by the protective structure. 展开更多
关键词 large Ti-steel cladding plate double vertical explosive welding comprehensive protective structure protective mechanism
下载PDF
Structures and Evolutions of Explosive Cyclones over the Northwestern and Northeastern Pacific 被引量:3
20
作者 ZHANG Shuqin FU Gang 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第3期581-593,共13页
In this study, the structures and evolutions of moderate(MO) explosive cyclones(ECs) over the Northwestern Pacific(NWP) and Northeastern Pacific(NEP) are investigated and compared using composite analysis with cyclone... In this study, the structures and evolutions of moderate(MO) explosive cyclones(ECs) over the Northwestern Pacific(NWP) and Northeastern Pacific(NEP) are investigated and compared using composite analysis with cyclone-relative coordinates. Final Operational Global Analysis data gathered during the cold seasons(October–April) of the 15 years from 2000 to 2015 are used. The results indicate that MO NWP ECs have strong baroclinicity and abundant latent heat release at low levels and strong upper-level forcing, which favors explosive cyclogenesis. The rapid development of MO NEP ECs results from their interaction with a northern cyclone and a large middle-level advection of cyclonic vorticity. The structural differences between MO NWP ECs and MO NEP ECs are significant. This results from their specific large-scale atmospheric and oceanic environments. MO NWP ECs usually develop rapidly in the east and southeast of the Japan Islands; the intrusion of cold dry air from the East Asian continent leads to strong baroclinicity, and the Kuroshio/Kuroshio Extension provides abundant latent heat release at low levels. The East Asian subtropical westerly jet stream supplies strong upper-level forcing. While MO NEP ECs mainly occur over the NEP, the low-level baroclinicity, upper-level jet stream, and warm ocean currents are relatively weaker. The merged cyclone associated with a strong middle-level trough transports large cyclonic vorticity to MO NEP ECs, which favors their rapid development. 展开更多
关键词 东北太平洋 气旋 结构 爆炸 西北 进化 亚洲大陆 NEP
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部