The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stre...The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stress and its structural parameters and working pressure, a mechanical analysis method for double-cone sealing of high pressure vessels is applied in analyzing the metal sealing ring under the condition of preload and operation. As a result, the formula of the unit sealing load for the metal sealing ring under operation with residual preload is shown in this paper, which ensures that the metal sealing ring has an excellent sealing effect and can prevent the metal sealing ring from yielding. Besides, while analyzing the sealing process of the metal sealing ring, the change rule of contact stress and working pressure is concluded here, putting forward that the structural parameters of the metal sealing ring are the major factors affecting the change rule. Finally, the analytical solution through theoretical analysis is compared with the simulation result through finite element analysis in a force feedback experiment, and both are consistent with each other, which fully verifies for the design and calculation theory on metal sealing ring's contact stress and its structural parameters and working pressure deduced in this paper. The proposed research will be treated as an applicable theory guiding the design of metal seal for subsea X-tree wellhead connectors.展开更多
The investigation on hydrodynamic characteristics of a cage is important for its application in the deep-sea aquaculture in our country.With finite element method,the beam element is used to simulate a three-dimension...The investigation on hydrodynamic characteristics of a cage is important for its application in the deep-sea aquaculture in our country.With finite element method,the beam element is used to simulate a three-dimensional metal chain net,and the connector element is introduced as the interaction between metal net lines.A mechanical model for the metal net is constructed to simulate the hydrodynamic characteristics of a metal net subjected to fluid current forces.The static simulation results show that the relative errors of the displacements are 2.13%,4.19%,6.64%,and 11.35% compared with static concentrated load tests under concentrated forces of 20,40,60,and 80 N,respectively.Both the transient hydrodynamic deformations and drag forces of the netting structures under different current velocities are obtained by solving the hydrodynamic equation of the netting structure.The average relative error of the current forces obtained by numerical simulations shows an 8.13%deviation from the drag tests of the metal nets in the tank under five current velocities.The effectiveness and precision of the simulation approach are verified by static and dynamic tests.The proposed simulation approach will provide a good foundation for the further investigation of the hydrodynamic characteristics of deep-sea aquaculture metal cages and the parameter design for the safety of such cage systems.展开更多
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2012AA09A205)
文摘The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stress and its structural parameters and working pressure, a mechanical analysis method for double-cone sealing of high pressure vessels is applied in analyzing the metal sealing ring under the condition of preload and operation. As a result, the formula of the unit sealing load for the metal sealing ring under operation with residual preload is shown in this paper, which ensures that the metal sealing ring has an excellent sealing effect and can prevent the metal sealing ring from yielding. Besides, while analyzing the sealing process of the metal sealing ring, the change rule of contact stress and working pressure is concluded here, putting forward that the structural parameters of the metal sealing ring are the major factors affecting the change rule. Finally, the analytical solution through theoretical analysis is compared with the simulation result through finite element analysis in a force feedback experiment, and both are consistent with each other, which fully verifies for the design and calculation theory on metal sealing ring's contact stress and its structural parameters and working pressure deduced in this paper. The proposed research will be treated as an applicable theory guiding the design of metal seal for subsea X-tree wellhead connectors.
基金financially supported by the National Natural Science Foundation (No. 31572663)
文摘The investigation on hydrodynamic characteristics of a cage is important for its application in the deep-sea aquaculture in our country.With finite element method,the beam element is used to simulate a three-dimensional metal chain net,and the connector element is introduced as the interaction between metal net lines.A mechanical model for the metal net is constructed to simulate the hydrodynamic characteristics of a metal net subjected to fluid current forces.The static simulation results show that the relative errors of the displacements are 2.13%,4.19%,6.64%,and 11.35% compared with static concentrated load tests under concentrated forces of 20,40,60,and 80 N,respectively.Both the transient hydrodynamic deformations and drag forces of the netting structures under different current velocities are obtained by solving the hydrodynamic equation of the netting structure.The average relative error of the current forces obtained by numerical simulations shows an 8.13%deviation from the drag tests of the metal nets in the tank under five current velocities.The effectiveness and precision of the simulation approach are verified by static and dynamic tests.The proposed simulation approach will provide a good foundation for the further investigation of the hydrodynamic characteristics of deep-sea aquaculture metal cages and the parameter design for the safety of such cage systems.