This paper investigates a simplified metal induced crystallization (MIC) of a-Si, named solution-based MIC (SMIC). The nickel inducing source was formed on a-Si from salt solution dissolved in de-ionized water or ...This paper investigates a simplified metal induced crystallization (MIC) of a-Si, named solution-based MIC (SMIC). The nickel inducing source was formed on a-Si from salt solution dissolved in de-ionized water or ethanol, a-Si thin film was deposited with low pressure chemical vapour deposition or plasma enhanced chemical vapour deposition as precursor material for MIC. It finds that the content of nickel source formed on a-Si can be controlled by solution concentration and dipping time. The dependence of crystallization rate of a-Si on annealing time illustrated that the linear density of nickel source was another critical factor that affects the crystallization of a-Si, besides the diffusion of nickel disilicide. The highest electron Hall mobility of thus prepared S-MIC poly-Si is 45.6 cm^2/(V· s). By using this S-MIC poly-Si, thin film transistors and display scan drivers were made, and their characteristics are presented.展开更多
Crystallization of amorphous silicon(a-Si) which starts from the middle of the a-Si region separating two adjacent metal-induced crystallization(MIC) polycrystalline silicon(poly-Si) regions is observed. The cry...Crystallization of amorphous silicon(a-Si) which starts from the middle of the a-Si region separating two adjacent metal-induced crystallization(MIC) polycrystalline silicon(poly-Si) regions is observed. The crystallization is found to be related to the distance between the neighboring nickel-introducing MIC windows. Trace nickel that diffuses from the MIC window into the a-Si matrix during the MIC heat-treatment is experimentally discovered, which is responsible for the crystallization of the a-Si beyond the MIC front. A minimum diffusion coefficient of 1.84×10^-9cm^2/s at 550℃ is estimated for the trace nickel diffusion in a-Si.展开更多
The structure and processes of nickel induced lateral crystallization are studied.The structure of metal induced lateral crystallization(MILC) is improved by opening a seed window on the buried oxide,which is helpfu t...The structure and processes of nickel induced lateral crystallization are studied.The structure of metal induced lateral crystallization(MILC) is improved by opening a seed window on the buried oxide,which is helpfu to get superior quality of large grain poly Si at low temperature.By optimizing the temperature and time of annealing based on others' pervious work,the large grain poly Si with few defects are obtained,and the typical grain size is 70~80μm.The methods of etching NiSi 2 which is created after the long time annealing are also studied for the first time.Finally,a method is successfully chosen to reduce the possible contamination of Ni and to guarantee the MILC for the submicron VLSI application.展开更多
Polycrystalline silicon (poly-Si) thin film has been prepared by means of nickel-disilicide (NiSi2) assisted excimer laser crystallization (ELC). The process to prepare a sample includes two steps. One step cons...Polycrystalline silicon (poly-Si) thin film has been prepared by means of nickel-disilicide (NiSi2) assisted excimer laser crystallization (ELC). The process to prepare a sample includes two steps. One step consists of the formation of NiSi2 precipitates by heat-treating the dehydrogenated amorphous silicon (a-Si) coated with a thin layer of Ni. And the other step consists of the formation of poly-Si grains by means of ELC. According to the test results of scanning electron microscopy (SEM), another grain growth model named two-interface grain growth has been proposed to contrast with the conventional Ni-metal-induced lateral crystallization (Ni-MILC) model and the ELC model. That is, an additional grain growth interface other than that in conventional ELC is formed, which consists of NiSi2 precipitates and a-Si. The processes for grain growth according to various excimer laser energy densities delivered to the a-Si film have been discussed. It is discovered that grains with needle shape and most of a uniform orientation are formed which grow up with NiSi2 precipitates as seeds. The reason for the formation of such grains which are different from that of Ni-MILC without migration of Ni atoms is not clear. Our model and analysis point out a method to prepare grains with needle shape and mostly of a uniform orientation. If such grains are utilized to make thin-film transistor, its characteristics may be improved.展开更多
A dynamic phosphor-silicate glass (PSG) gettering method is proposed in which the processes of the gettering of Ni by PSC and the crystallizing of α-Si into poly-Si by Ni take place simultaneously. The effects of P...A dynamic phosphor-silicate glass (PSG) gettering method is proposed in which the processes of the gettering of Ni by PSC and the crystallizing of α-Si into poly-Si by Ni take place simultaneously. The effects of PSC gettering process on the performances of solution-based metal induced crystallized (S-MIC) poly-Si materials and their thin film transistors (TFTs) are discussed. The crystallization rate is much reduced due to the fact that the Ni as a medium source of crystallization is extracted by the PSC during crystallization at the same time. The boundary between two neighbouring grains in S-MIC poly-Si with PSG looks blurrier than without PSG. Compared with the TFTs made from S-MIC poly-Si without PSC gettering, the TFTs made with PSC gettering has a reduced gate induced leakage current.展开更多
采用 Ni诱导结晶的方法在氧化硅衬底上制备多晶 Si Ge薄膜 .通过 X射线衍射 (XRD)、俄歇电子深度分布谱(AES)等测试方法对获得的多晶 Si Ge薄膜特性进行了表征 ,并对退火气氛中氧的存在对非晶 Si Ge结晶的影响进行了研究 .研究表明 Ni...采用 Ni诱导结晶的方法在氧化硅衬底上制备多晶 Si Ge薄膜 .通过 X射线衍射 (XRD)、俄歇电子深度分布谱(AES)等测试方法对获得的多晶 Si Ge薄膜特性进行了表征 ,并对退火气氛中氧的存在对非晶 Si Ge结晶的影响进行了研究 .研究表明 Ni的参与可以显著降低非晶 Si Ge薄膜的结晶时间以及结晶温度 ;退火气氛中氧的存在对非晶 Si Ge结晶有明显阻碍作用 ;采用先在高纯 N2 (99.99% )气氛下快速热退火 (RTA)预处理 ,再在普通退火炉中长时间退火的方法可以明显改善非晶 Si展开更多
基金supported by Key Project of National Natural Science Foundation of China (Grant No 60437030)"863" Project of National Ministry of Science and Technology of China (Grant No 2004AA33570)Tianjin Natural Science Foundation of China (Grant No 05YFJMJC01400)
文摘This paper investigates a simplified metal induced crystallization (MIC) of a-Si, named solution-based MIC (SMIC). The nickel inducing source was formed on a-Si from salt solution dissolved in de-ionized water or ethanol, a-Si thin film was deposited with low pressure chemical vapour deposition or plasma enhanced chemical vapour deposition as precursor material for MIC. It finds that the content of nickel source formed on a-Si can be controlled by solution concentration and dipping time. The dependence of crystallization rate of a-Si on annealing time illustrated that the linear density of nickel source was another critical factor that affects the crystallization of a-Si, besides the diffusion of nickel disilicide. The highest electron Hall mobility of thus prepared S-MIC poly-Si is 45.6 cm^2/(V· s). By using this S-MIC poly-Si, thin film transistors and display scan drivers were made, and their characteristics are presented.
基金supported by the National Natural Science Foundation of China(Grant Nos.61301077 and 61574096)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130319)the Science and Technology Program of Suzhou City,China(Grant No.SYG201538)
文摘Crystallization of amorphous silicon(a-Si) which starts from the middle of the a-Si region separating two adjacent metal-induced crystallization(MIC) polycrystalline silicon(poly-Si) regions is observed. The crystallization is found to be related to the distance between the neighboring nickel-introducing MIC windows. Trace nickel that diffuses from the MIC window into the a-Si matrix during the MIC heat-treatment is experimentally discovered, which is responsible for the crystallization of the a-Si beyond the MIC front. A minimum diffusion coefficient of 1.84×10^-9cm^2/s at 550℃ is estimated for the trace nickel diffusion in a-Si.
文摘The structure and processes of nickel induced lateral crystallization are studied.The structure of metal induced lateral crystallization(MILC) is improved by opening a seed window on the buried oxide,which is helpfu to get superior quality of large grain poly Si at low temperature.By optimizing the temperature and time of annealing based on others' pervious work,the large grain poly Si with few defects are obtained,and the typical grain size is 70~80μm.The methods of etching NiSi 2 which is created after the long time annealing are also studied for the first time.Finally,a method is successfully chosen to reduce the possible contamination of Ni and to guarantee the MILC for the submicron VLSI application.
基金Project supported by the National High Technology Development Program of China (Grant No 2002AA303250) and by the National Natural Science Foundation of China (Grant No 60576056).
文摘Polycrystalline silicon (poly-Si) thin film has been prepared by means of nickel-disilicide (NiSi2) assisted excimer laser crystallization (ELC). The process to prepare a sample includes two steps. One step consists of the formation of NiSi2 precipitates by heat-treating the dehydrogenated amorphous silicon (a-Si) coated with a thin layer of Ni. And the other step consists of the formation of poly-Si grains by means of ELC. According to the test results of scanning electron microscopy (SEM), another grain growth model named two-interface grain growth has been proposed to contrast with the conventional Ni-metal-induced lateral crystallization (Ni-MILC) model and the ELC model. That is, an additional grain growth interface other than that in conventional ELC is formed, which consists of NiSi2 precipitates and a-Si. The processes for grain growth according to various excimer laser energy densities delivered to the a-Si film have been discussed. It is discovered that grains with needle shape and most of a uniform orientation are formed which grow up with NiSi2 precipitates as seeds. The reason for the formation of such grains which are different from that of Ni-MILC without migration of Ni atoms is not clear. Our model and analysis point out a method to prepare grains with needle shape and mostly of a uniform orientation. If such grains are utilized to make thin-film transistor, its characteristics may be improved.
基金Project supported by the National High Technology Research and Developments Program of China (Grant No 004AA33570)Key Project of National Natural Science Foundation of China (NSFC) (Grant No 60437030)Tianjin Natural Science Foundation(Grant No 05YFJMJC01400)
文摘A dynamic phosphor-silicate glass (PSG) gettering method is proposed in which the processes of the gettering of Ni by PSC and the crystallizing of α-Si into poly-Si by Ni take place simultaneously. The effects of PSC gettering process on the performances of solution-based metal induced crystallized (S-MIC) poly-Si materials and their thin film transistors (TFTs) are discussed. The crystallization rate is much reduced due to the fact that the Ni as a medium source of crystallization is extracted by the PSC during crystallization at the same time. The boundary between two neighbouring grains in S-MIC poly-Si with PSG looks blurrier than without PSG. Compared with the TFTs made from S-MIC poly-Si without PSC gettering, the TFTs made with PSC gettering has a reduced gate induced leakage current.
文摘采用 Ni诱导结晶的方法在氧化硅衬底上制备多晶 Si Ge薄膜 .通过 X射线衍射 (XRD)、俄歇电子深度分布谱(AES)等测试方法对获得的多晶 Si Ge薄膜特性进行了表征 ,并对退火气氛中氧的存在对非晶 Si Ge结晶的影响进行了研究 .研究表明 Ni的参与可以显著降低非晶 Si Ge薄膜的结晶时间以及结晶温度 ;退火气氛中氧的存在对非晶 Si Ge结晶有明显阻碍作用 ;采用先在高纯 N2 (99.99% )气氛下快速热退火 (RTA)预处理 ,再在普通退火炉中长时间退火的方法可以明显改善非晶 Si