期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Fabrication of Y-junction Metal Nanowires by AAO Template-assisted AC Electrodeposition 被引量:1
1
作者 Huanan Duan Zhenhai Xia Jianyu Liang 《Nano-Micro Letters》 SCIE EI CAS 2010年第4期290-295,共6页
In this communication,we report a synthetic approach to fabricate Y-junction Co nanowires and Y-junction Cu nanowires by AC electrodeposition using a hierarchically designed anodized aluminum oxide template.Morphology... In this communication,we report a synthetic approach to fabricate Y-junction Co nanowires and Y-junction Cu nanowires by AC electrodeposition using a hierarchically designed anodized aluminum oxide template.Morphology study showe that diameters of the stems and branches of the Y-junction nanowires were about 40 nm and 20 nm respectively.Structural analysis indicates that Co nanowires had a mixture of face-center-cubic and hexagonal-close-packed structures,whereas Cu nanowires had a face-center-cubic structure with a <110> texture.The Y-junction Co nanowires exhibited a longitudinal coercivity of 1300 Oe and remnant magnetization of 56%,which was affected by the growth direction and microstructure.The present method can be extended to other metallic systems and thus provides a simple and efficient way to fabricate Y-junction metal nanowires. 展开更多
关键词 AAO template Nanofabrication AC electrodeposition Y-junction metal nanowires Magnetic property
下载PDF
Effects of shape of terminus on excitation of surface plasmon modes on metal nanowires
2
作者 乔雅楠 杨树 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期483-488,共6页
The effects of the shape of a nanowire terminus on the excited surface plasmon polariton (SPP) modes are investigated. The conical terminus and terminus cut at a certain angle are studied. For the first time, the qu... The effects of the shape of a nanowire terminus on the excited surface plasmon polariton (SPP) modes are investigated. The conical terminus and terminus cut at a certain angle are studied. For the first time, the quantitative mode decompositions are carried out to derive the full information about excited SPP modes. It is demonstrated that tuning the shape of the terminus provides an effective method to control the composition of excited SPP modes on metal nanowires. It is especially found that some important patterns, such as the pure TM0 mode and the superposition of TM0 and HE+1 or HE-1 modes, can be generated by some specific shapes of the terminus, whereas there is no way to produce these patterns using flat-end nanowires. 展开更多
关键词 metal nanowire shape of terminus surface plasmon polariton modes mode decomposition
下载PDF
Terahertz plasmon and surface-plasmon modes in cylindrical metallic nanowires
3
作者 吴平 徐文 +2 位作者 李龙龙 卢铁城 吴卫东 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期557-561,共5页
We present a theoretical study on collective excitation modes associated with plasmon and surface-plasmon oscilla- tions in cylindrical metallic nanowires. Based on a two-subband model, the dynamical dielectric functi... We present a theoretical study on collective excitation modes associated with plasmon and surface-plasmon oscilla- tions in cylindrical metallic nanowires. Based on a two-subband model, the dynamical dielectric function matrix is derived under the random-phase approximation. An optic-like branch and an acoustic-like branch, which are free of Landau damp- ing, are observed for both plasmon and surface-plasmon modes. Interestingly, for surface-plasmon modes, we find that two branches of the dispersion relation curves converge at a wavevector qz = qrnax beyond which no surface-plasmon mode exists. Moreover, we examine the dependence of these excitation modes on sample parameters such as the radius of the nanowires. It is found that in metallic nanowires realized by state-of-the-art nanotechnology the intra- and inter-subband plasmon and surface-plasmon frequencies are in the terahertz bandwidth. The frequency of the optic-like modes decreases with increasing radius of the nanowires, whereas that of the acoustic-like modes is not sensitive to the variation of the radius. This study is pertinent to the application of metallic nanowires as frequency-tunable terahertz plasmonic devices. 展开更多
关键词 metallic nanowires collective excitations TERAHERTZ
下载PDF
High-performance wearable bimetallic nanowire-assisted composite foams for efficient electromagnetic interference shielding,infrared stealth,and piezoresistive sensing
4
作者 Tianyi Hang Lijie Zhou +7 位作者 Chenhui Xu Yiming Chen Jiahui Shen Jiajia Zheng Pingan Yang Xiping Li Heng Luo Guoxiu Tong 《Nano Research》 SCIE EI CSCD 2024年第7期6757-6765,共9页
With the accelerated development of modern detection and communication technology,the multifunctional wearable materials with excellent electromagnetic interference(EMI)shielding,infrared stealth,and human monitoring ... With the accelerated development of modern detection and communication technology,the multifunctional wearable materials with excellent electromagnetic interference(EMI)shielding,infrared stealth,and human monitoring for improving military combat capability have received extensive attention.In this work,the lightweight melamine foam(MF)@silver nanowires(AgNWs)-iron nanowires(FeNWs)(AgFe-MF)was fabricated by a vacuum-assisted dip-coating method.Due to the porous structure and synergistic electrical and magnetic losses,this lightweight(0.115 g/cm^(3))composite foam with an ultra-low filler content(0.62 vol.%)exhibited an ideal EMI shielding efficiency of 38.4 dB.On the other hand,the AgFe-MF realized a powerful multifunctional integration.The surface saturation temperature of the AgFe-MF reached 94.2℃under a low applied voltage of 1.8 V and remained extremely fast heating and cooling response and terrific working stability,resulting in excellent infrared stealth and camouflage effects.Furthermore,taking virtues of the elastic porous conductive architecture,the AgFe-MF was utilized as a piezoresistive sensor exhibiting board compressive interval of 0–1.62 kPa(50%strain)with a good sensitivity of 0.57 kPa−1.This work will provide new ideas and insights for developing multifunctional wearable devices in the fields of EMI shielding,thermal management,and piezoresistive sensing. 展开更多
关键词 metal nanowires porous foams electromagnetic interference shielding infrared stealth wearable sensors
原文传递
Simultaneous fabrication of porous metals and metallic nanowires via atmospheric pressure plasma-assisted electro-dealloying
5
作者 LU AnKang LI HanYu +1 位作者 YU Yao LIU Lin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第1期165-172,共8页
Porous metals and metallic nanowires have gained significant attention for their potential applications in catalysis, sensing, and energy storage. Developing a versatile and efficient method for fabricating these func... Porous metals and metallic nanowires have gained significant attention for their potential applications in catalysis, sensing, and energy storage. Developing a versatile and efficient method for fabricating these functional materials is crucial but remains challenging. Herein, we report a novel and facile electro-dealloying strategy to simultaneously fabricate porous metals and metallic nanowires using atmospheric radio-frequency(RF) capacitively coupled plasmas. The synergistic effect of the heating and plasma sheath’s electric field lead to the nonequilibrium melting of the alloy, resulting continuous ejection of the melted segments to form nanowires and let the unmelted residual parts evolve into a porous structure. This method is applicable to alloys with large melting point differences of their constituent elements, and provides a promising approach to fabricate porous metals and metallic nanowires for a wide range of functional applications. 展开更多
关键词 atmospheric plasma porous metals metallic nanowires electro-dealloying
原文传递
Refit Silver Nanostructures Using a Convergent Electron Beam 被引量:1
6
作者 张建红 《Chinese Physics Letters》 SCIE CAS CSCD 2007年第4期1007-1009,共3页
Using a superionic conductor AgI thin film and a direct current electric field, we synthesize silver nanowires in diameter of about lOOnm. In order to refit the prepared nanowires, the samples are irradiated by a conv... Using a superionic conductor AgI thin film and a direct current electric field, we synthesize silver nanowires in diameter of about lOOnm. In order to refit the prepared nanowires, the samples are irradiated by a convergent electron beam (200 k V) inside a transmission electron microscope to prepare new small silver nanostructures. The new nanostructures are investigated in situ by high-resolution transmission electron microscope. This electron- induced crystal growth method is useful for technical applications in fabrication of nanodevices. 展开更多
关键词 SHAPE-CONTROLLED SYNTHESIS metal nanowires COPPER nanowires THIN-FILM GROWTH FIELD SOFT
下载PDF
Self-organization and tunable characteristic lengths of twodimensional hexagonal superlattices of nanowires directly grown on substrates
7
作者 D.Yi L.Peres +7 位作者 A.Pierrot S.Cayez R.Cours B.Warot-Fonrose C.Marcelot P.Roblin K.Soulantica T.Blon 《Nano Research》 SCIE EI CSCD 2023年第1期1606-1613,共8页
The organization of nano-objects on macroscopic surfaces is a key challenge for the technological improvement and implementation of nanotechnologies.For achieving operational functions,it is required to assemble nano-... The organization of nano-objects on macroscopic surfaces is a key challenge for the technological improvement and implementation of nanotechnologies.For achieving operational functions,it is required to assemble nano-objects as controllable building blocks in highly ordered superstructures.Herein,we demonstrate the growth and self-organization of metallic nanowires on surfaces into hexagonal superlattices with tunable characteristic lengths depending of the stabilizing surfactants employed.Starting from a reacting mixture containing a Pt(111)substrate,a Co organometallic precursor,an amine,and an acid dissolved in a solvent,we quantify the structural evolution of superlattices of vertical single-crystalline Co nanowires on Pt,using a combined analysis of small angle neutron scattering,transmission,and scanning electron microscopies.We show the concerted steps of a spontaneous growth and self-organization of the nanowires into two-dimensional(2D)hexagonal lattice on Pt,at intervals starting from a few hours of reaction to a highly ordered superlattice at longer times.Furthermore,it is shown that apart from long-chain acid and long-chain aliphatic amine pairs used as stabilizers,the combination of a long-chain aliphatic and a short-chain aromatic ligand in the synthesis can also be employed for the nanowire superlattices development.Interestingly,the possibility to employ different pairs allows quantitative modulation of the nanowire arrays,such as the interwire distance and the packing fraction. 展开更多
关键词 metallic nanowire array self-assembly self-organized growth Co nanowire anisotropic growth solution epitaxial growth
原文传递
Ultra-dense planar metallic nanowire arrays with extremely large anisotropic optical and magnetic properties
8
作者 Qi Jia Xin Ou +14 位作者 Manuel Langer Benjamin Schreiber Jorg Grenzer Pablo F. Siles Raul D. Rodriguez Kai Huang Ye Yuan Alireza Heidarian Rene Hubner Tiangui You Wenjie Yu Kilian Lenz Jurgen Lindner Xi Wang Stefan Facsko 《Nano Research》 SCIE EI CAS CSCD 2018年第7期3519-3528,共10页
A nanofabrication method for the production of ultra-dense planar metallic nanowire arrays scalable to wafer-size is presented. The method is based on an efficient template deposition process to grow diverse metallic ... A nanofabrication method for the production of ultra-dense planar metallic nanowire arrays scalable to wafer-size is presented. The method is based on an efficient template deposition process to grow diverse metallic nanowire arrays with extreme regularity in only two steps. First, Ⅲ-Ⅴ semiconductor substrates are irradiated by a low-energy ion beam at an elevated temperature, forming a highly ordered nanogroove pattern by a "reverse epitaxy" process due to self-assembly of surface vacancies. Second, diverse metallic nanowire arrays (Au, Fe, Ni, Co, FeAl alloy) are fabricated on these Ⅲ-Ⅴ templates by deposition at a glancing incidence angle. This method allows for the fabrication of metallic nanowire arrays with periodicities down to 45 nm scaled up to wafer-size fabrication. As typical noble and magnetic metals, the Au and Fe nanowire arrays produced here exhibited large anisotropic optical and magnetic properties, respectively. The excitation of localized surface plasmon resonances (LSPRs) of the Au nanowire arrays resulted in a high electric field enhancement, which was used to detect phthalocyanine (CoPc) in surface-enhanced Raman scattering (SERS). Furthermore, the Fe nanowire arrays showed a very high in-plane magnetic anisotropy of approximately 412 mT, which may be the largest in-plane magnetic anisotropy field yet reported that is solely induced via shape anisotropy within the plane of a thin film. 展开更多
关键词 self-assembly metallic nanowire array reverse epitaxy magnetic anisotropy anisotropic dieledric function
原文传递
Research Progress of Nanomaterials-Based Sensors for Food Safety 被引量:1
9
作者 Yuan-Xin Li Hai-Yang Qin +7 位作者 Can Hu Meng-Meng Sun Pei-Yi Li Huan Liu Jin-Cheng Li Zhi-Bo Li Li-Dong Wu Jun Zhu 《Journal of Analysis and Testing》 EI 2022年第4期431-440,共10页
With the improvement of people’s requirements for food quality,food safety has become the focus of society.More and more researchers continue to develop specific and convenient biochemical sensors for the detection o... With the improvement of people’s requirements for food quality,food safety has become the focus of society.More and more researchers continue to develop specific and convenient biochemical sensors for the detection of certain components in food,which also imposes higher requirements for the structure and performance of nanomaterials.Biochemical sensors based on carbon nanotubes,metal nanowires,nanofibers,metal-organic framework(MOF)compounds and other functional composite materials have the advantages of high sensitivity,great detection speed and reliable results,and have been continuously developed and widely used in medical,environmental and food safety fields.This paper reviews the progress of research on the application of the sensors based on the above functional nanomaterials in food detection in recent years,demonstrates the advantages brought by the functional composite materials,and discusses the challenges faced by the functional nanomaterials in the field of food safety testing,to provide an effective reference for developing functional composite material sensors for food safety testing. 展开更多
关键词 Carbon nanotubes metal nanowires NANOFIBERS MOFS SENSORS Food safety
原文传递
Ultra-high strength yet superplasticity in a hetero-grain-sized nanocrystalline Au nanowire 被引量:2
10
作者 Libo Fu Deli Kong +10 位作者 Chengpeng Yang Jiao Teng Yan Lu Yizhong Guo Guo Yang Xin Yan Pan Liu Mingwei Chen Ze Zhang Lihua Wang Xiaodong Han 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第6期95-106,共12页
Nanocrystalline metals often display a high strength up to the gigapascal level,yet they suffer from poor plasticity.Previous studies have shown that the development of hetero-sized grains can efficiently overcome the... Nanocrystalline metals often display a high strength up to the gigapascal level,yet they suffer from poor plasticity.Previous studies have shown that the development of hetero-sized grains can efficiently overcome the strength-ductility trade-off of nanocrystalline metals.However,whether this strategy can lead to the fabrication of nanocrystalline nanowires exhibiting both high strength and superplasticity is unclear,similar to the atomistic deformation mechanism.In this paper,we show that ultra-small nanocrystalline Au nanowires comprising grains in both the Hall–Petch and inverse Hall–Petch grain-size regions can exhibit extremely high uniform elongation(236%)and high strength(2.34 gigapascals)at room temperature.In situ atomic-scale observations revealed that the plastic deformation underwent two stages.In the first stage,the super-elongation ability originated from the intergrain plasticity of small grains via mechanisms such as grain boundary migration and grain rotation.This intergrain plasticity caused the grains in the heterogeneous-structured nanowires to grow very large.In the second stage,the superelongation ability originated from intragrain plasticity accompanied by the diffusion of surface atoms.Our results show that the hetero-grain-sized nanocrystalline nanowires,comprising grains with sizes both in the strongest Hall–Petch effect region and the inverse Hall–Petch effect region,were simultaneously ultrastrong and ductile.They displayed neither a strength-ductility trade-off nor plastic instability. 展开更多
关键词 In situ Mechanical property metallic nanowires Transmission electron microscopy Plastic deformation
原文传递
Recent advances in gas-involved in situ studies via transmission electron microscopy 被引量:4
11
作者 Ying Jiang Zhengfei Zhang +3 位作者 Wentao Yuan Xun Zhang Yong wang Ze Zhang 《Nano Research》 SCIE EI CAS CSCD 2018年第1期42-67,共26页
Gases that are widely used in research and industry have a significant effect on both the configuration of solid materials and the evolution of reactive systems. Traditional studies on gas-solid interactions have most... Gases that are widely used in research and industry have a significant effect on both the configuration of solid materials and the evolution of reactive systems. Traditional studies on gas-solid interactions have mostly been static and post-mortem and unsatisfactory for elucidating the real active states during the reactions. Recent developments of controlled-atmosphere transmission electron microscopy (TEM) have led to impressive progress towards the simulation of real-world reaction environments, allowing the atomic-scale recording of dynamic events. In this review, on the basis of the in situ research of our group, we outline the principles and features of the controlled-atmosphere TEM techniques and summarize the significant recent progress in the research activities on gas-solid interactions, including nanowire growth, catalysis, and metal failure. Additionally, the challenges and opportunities in the real-time observations on such platform are discussed. 展开更多
关键词 controlled-atmospheretransmission electronmicroscopy (TEM) nanowire growth catalysis metal failure
原文传递
Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons
12
作者 Guang-cun SHAN Shu-ying BAO +1 位作者 Kang ZHANG Wei HUANG 《Frontiers of physics》 SCIE CSCD 2011年第3期313-319,共7页
Motivated by the recent pioneering advances on nanoscale plasmonics and also nanophotonics tech- nology based on the surface plasmons (SPs), in this work, we give a master equation model in the Lindblad form and inv... Motivated by the recent pioneering advances on nanoscale plasmonics and also nanophotonics tech- nology based on the surface plasmons (SPs), in this work, we give a master equation model in the Lindblad form and investigate the quantum optical properties of single quantum dot (QD) emitter coupled to the SPs of a metallic nanowire. Our main results demonstrate the QD luminescence results of photon emission show three distinctive regimes depending on the distance between QD and metallic nanowire, which elucidates a crossover passing from being metallic dissipative for much smaller emitter-nanowire distances to surface plasmon (SP) emission for larger separations at the vicinity of plasmonic metallic nanowire. Besides, our results also indicate that, for both the resonant case and the detuning case, through measuring QD emitter luminescence spectra and second-order correlation functions, the information about the QD emitter coupling to the SPs of the dissipative metallic nanowire can be extracted. This theoretical study will serve as an introduction to un- derstanding the nanoplasmonic imaging spectroscopy and pave a new way to realize the quantum information devices. 展开更多
关键词 quantum plasmonics quantum optics metallic nanowire surface plasmon (SP) quan-tum dot
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部