钢丝绳金属横截面积损失(Loss of Metallic area)直接影响钢丝绳承载强度等特性,因此其检测及定量分析对于设备安全可靠运行具有重要意义。针对目前主磁通检测中存在的线圈绕制困难、参数确定模糊等问题,基于仿真模型提出一种基于印制...钢丝绳金属横截面积损失(Loss of Metallic area)直接影响钢丝绳承载强度等特性,因此其检测及定量分析对于设备安全可靠运行具有重要意义。针对目前主磁通检测中存在的线圈绕制困难、参数确定模糊等问题,基于仿真模型提出一种基于印制电路板(Printed Circuit Board)的分体式线圈结构,分析了线圈匝数、线圈层数、线距等参数对检测信号的影响;建立主磁通检测模型,探究损伤宽度对主磁通检测信号的影响规律,并针对损伤宽度变化造成的信号损失设计补偿方法;最后通过钢丝实验验证金属横截面积定量检测效果,表明该方法定量误差在1%以内,能够有效检测钢丝绳的LMA。展开更多
This study analyses the metal recyclability from waste Printed Circuit Boards (PCBs) with three material recycling quoting approaches: Material Recycling Efficiency (MRE), Resource Recovery Efficiency (RRE), and Quote...This study analyses the metal recyclability from waste Printed Circuit Boards (PCBs) with three material recycling quoting approaches: Material Recycling Efficiency (MRE), Resource Recovery Efficiency (RRE), and Quotes for Environmentally Weighted Recyclability (QWERTY). The results indicate that MRE is likely inapplicable to quoting the metal recyclability of waste PCBs because it makes the recycling of any metal is equal to each other (e.g. recycling of 1 kg of gold is as important as recycling of 1 kg of iron). RRE and QWERTY can overcome the poor yardstick of MRE because they concern not only the weight of recycled materials but also the contribution of recycled materials to the natural resource conservation and the environmental impact reduction, respectively. These two approaches, however, report an extremely different result, that makes the target stakeholders get confused with which material recycled. From the findings of the aforementioned analysis, this study proposes the Model for Evaluating Metal Recycling Efficiency from Complex Scraps (MEMRECS) as a new approach to quotes the metal recycling performance. MEMRECS allows a trade-offs between three criteria: mass, environmental impacts and natural resources conservation, hence it can provide the result in a sustainable sound manner. MEMRECS clearly models and enhances the role of natural resources conservation aspect rather than QWERTY does.展开更多
文摘This study analyses the metal recyclability from waste Printed Circuit Boards (PCBs) with three material recycling quoting approaches: Material Recycling Efficiency (MRE), Resource Recovery Efficiency (RRE), and Quotes for Environmentally Weighted Recyclability (QWERTY). The results indicate that MRE is likely inapplicable to quoting the metal recyclability of waste PCBs because it makes the recycling of any metal is equal to each other (e.g. recycling of 1 kg of gold is as important as recycling of 1 kg of iron). RRE and QWERTY can overcome the poor yardstick of MRE because they concern not only the weight of recycled materials but also the contribution of recycled materials to the natural resource conservation and the environmental impact reduction, respectively. These two approaches, however, report an extremely different result, that makes the target stakeholders get confused with which material recycled. From the findings of the aforementioned analysis, this study proposes the Model for Evaluating Metal Recycling Efficiency from Complex Scraps (MEMRECS) as a new approach to quotes the metal recycling performance. MEMRECS allows a trade-offs between three criteria: mass, environmental impacts and natural resources conservation, hence it can provide the result in a sustainable sound manner. MEMRECS clearly models and enhances the role of natural resources conservation aspect rather than QWERTY does.