Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en...Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).展开更多
Thermoacoustic imaging(TAI)is an emerging high-resolution and high-contrast imaging technology.In recent years,metal wires have been used in TAI experiments to quantitatively evaluate the spatial resolution of differe...Thermoacoustic imaging(TAI)is an emerging high-resolution and high-contrast imaging technology.In recent years,metal wires have been used in TAI experiments to quantitatively evaluate the spatial resolution of different systems.However,there is still a lack of analysis of the response characteristics and principles of metal wires in TAI.Through theoretical and simulation analyses,this paper proposes that the response of metal(copper)wires during TAI is equivalent to the response of antennas.More critically,the response of the copper wire is equivalent to the response of a half-wave dipole antenna.When its length is close to half the wavelength of the incident electromagnetic wave,it obtains the best response.In simulation,when the microwave excitation frequencies are 1.3 GHz,3.0 GHz,and 5.3 GHz,and the lengths of copper wires are separately set to 11 cm,5 cm,and 2.5 cm,the maximum SAR distribution and energy coupling effciency are obtained.This result is connected with the best response of half-wave dipole antennas with lengths of 11 cm,4.77 cm,and 2.7 cm under the theoretical design,respectively.Regarding the further application,TAI can be used to conduct guided minimally invasive surgery on surgical instrument imaging.Thus,this paper indicated that results can also guide the design of metal surgical instruments utilized in different microwave frequencies.展开更多
Recently, the single metal wire (SW) has become attractive for its potential applications in the terahertz and higher frequency range. However, as the most simple and typical surface plasmon polariton (SPP) transm...Recently, the single metal wire (SW) has become attractive for its potential applications in the terahertz and higher frequency range. However, as the most simple and typical surface plasmon polariton (SPP) transmission line, its study seems far from enough. Many important transmission behaviours have not been explained satisfactorily from the viewpoint of physics. In this paper, making use of the modified Drude model (MDM) based on the Sommerfeld theory, the transmission behaviours of SPPs along SW are systemically investigated theoretically. Some important physical phenomena such as the mode transformation, the lifetime of the radiative mode and the resonance frequency are revealed, and their mechanisms are explored. The results obtained in the paper will facilitate a general understanding of the features and the physical essence of the SPP transmission, not only for SW itself but also for other SPP transmission lines.展开更多
Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is pre...Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites.展开更多
To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire m...To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire materials(EPMWM)for vibration isolation was previously investigated.In this paper,a study focusing on the impact-resistance of EPMWM with the consideration of ambient temperature is presented.The quasi-static and low-velocity impact mechanical behavior of EPMWM under different temperatures(25℃-300℃)are systematically studied.The results of the static compression test show that the damping energy dissipation of EPMWM increases with temperature while the nonlinear damping characteristics are gradually enhanced.During the impact experiments,the impact energy loss rate of EPMWM was between 65%and 85%,while the temperatures increased from 25℃to 300℃.Moreover,under the same drop impact conditions,the overall deformation of EPMWM decreases in the temperature range of 100℃-200℃.On the other hand,the impact stiffness,energy dissipation,and impact loss factor of EPMWM significantly increase with temperature.This can be attributed to an increase in temperature,which changes the thermal expansion coefficient and contact state of the internal wire helixes.Consequently,the energy dissipation mode(dry friction,air damping,and plastic deformation)of EPMWM is also altered.Therefore,the EPMWM may act as a potential candidate material for superior energy absorption applications.展开更多
Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great signifi...Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great significance to reveal the thermal response mechanism of EPMWM based on its complex structural effects.In the present work,virtual manufacturing technology(VMT)was developed to restore the physics-based 3D model of EPMWM.On this basis,the transient thermal analysis is carried out to explore the contact-relevant thermal behavior of EPMWM,and then the spiral unit containing unique structural information are further extracted and counted.In particular,the thermal resistance network is numerically constructed based on the spiral unit through the thermoelectric analogy method to accurately predict the effective thermal conductivity(ETC)of EPMWM.Finally,the thermal diffusivity and specific heat of the samples were obtained by the laser thermal analyzer to calculate the ETC and thermal insulation factor of interest.The results show that the ETC of EPMWM increases with increasing temperature or reducing density under the experimental conditions.The numerical prediction is consistent with the experimental result and the average error is less than 4%.展开更多
We mainly investigated the effect of metallic wire grid on its optical property. At first, we give one simple model to deduce an expression which can describe the relationship of the optical property with the width of...We mainly investigated the effect of metallic wire grid on its optical property. At first, we give one simple model to deduce an expression which can describe the relationship of the optical property with the width of metallic wire grid. This expression could be used to calculate the reflectance of the metallic wire grid. We also give the corresponding computer simulation. Our simulation shows that the reflectance would increase when the width of metallic wire grid increase. The wider the metallic wire grid is, the higher the reflectance is. The reflectance would reach the maximum value only when the width is over the free path of electronic.展开更多
In this study, the residual strain of a thin conductive metal wire on a polymer substrate after electrical failure is measured with SEM moir′e. Focused ion beam(FIB) milling is applied to fabricate micron moir′e gra...In this study, the residual strain of a thin conductive metal wire on a polymer substrate after electrical failure is measured with SEM moir′e. Focused ion beam(FIB) milling is applied to fabricate micron moir′e gratings on the surfaces of constantan wires and the random phase shifting technique is used to process moir′e fringes. The virtual strain method is briefly introduced and used to calculate the real strain of specimens. In order to study the influence of a defect on the electrical failure of the constantan wire, experiments were conducted on two specimens, one with a crack, while the other one without any crack. By comparing the results, we found that the defect makes the critical beam current of electrical failure decrease. In addition, the specimens were subjected to compression after electrical failure, in agreement with the observed crack closure of the specimen. The successful results demonstrate that the moir′e method is effective to characterize the full-field deformation of constantan wires on the polymer membrane, and has a good potential for further application to the deformation measurement of thin films.展开更多
In the present work, the wire electrical discharge machining(WEDM) process of the 65 vol% SiCp/2024 Al composite prepared by pressure infiltration methods has been investigated. The microstructure of the machined co...In the present work, the wire electrical discharge machining(WEDM) process of the 65 vol% SiCp/2024 Al composite prepared by pressure infiltration methods has been investigated. The microstructure of the machined composite was characterized by scanning electron microscope, the average surface roughness(Ra), X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy(TEM) techniques. Three zones from the surface to the interior(melting zone, heat affected zone and un-affected zone) were found in the machined composites, while the face of SiC particles on the surface toward the outside was ‘‘cut'' to be flat. Increase in Al and Si but decrease in C and O were observed in the core areas of the removed particles. Si phase, which was generated due to the decomposition of SiC, was detected after the WEDM process. The irregular and spherical particles were further observed by TEM. Based on the microstructure observation, it is suggested that the machining mechanism of 65 vol% SiCp/2024 Al composite was the combination of the melting of Al matrix and the decomposition of SiC particles.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.51805086)。
文摘Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).
基金supported by the National Natural Science Foundation of China(No.82071940).
文摘Thermoacoustic imaging(TAI)is an emerging high-resolution and high-contrast imaging technology.In recent years,metal wires have been used in TAI experiments to quantitatively evaluate the spatial resolution of different systems.However,there is still a lack of analysis of the response characteristics and principles of metal wires in TAI.Through theoretical and simulation analyses,this paper proposes that the response of metal(copper)wires during TAI is equivalent to the response of antennas.More critically,the response of the copper wire is equivalent to the response of a half-wave dipole antenna.When its length is close to half the wavelength of the incident electromagnetic wave,it obtains the best response.In simulation,when the microwave excitation frequencies are 1.3 GHz,3.0 GHz,and 5.3 GHz,and the lengths of copper wires are separately set to 11 cm,5 cm,and 2.5 cm,the maximum SAR distribution and energy coupling effciency are obtained.This result is connected with the best response of half-wave dipole antennas with lengths of 11 cm,4.77 cm,and 2.7 cm under the theoretical design,respectively.Regarding the further application,TAI can be used to conduct guided minimally invasive surgery on surgical instrument imaging.Thus,this paper indicated that results can also guide the design of metal surgical instruments utilized in different microwave frequencies.
基金Project supported by the Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No.20100185110022)the National Basic Research Program of China (Grant No. 2007CB310401)the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. ZYGX2011J037)
文摘Recently, the single metal wire (SW) has become attractive for its potential applications in the terahertz and higher frequency range. However, as the most simple and typical surface plasmon polariton (SPP) transmission line, its study seems far from enough. Many important transmission behaviours have not been explained satisfactorily from the viewpoint of physics. In this paper, making use of the modified Drude model (MDM) based on the Sommerfeld theory, the transmission behaviours of SPPs along SW are systemically investigated theoretically. Some important physical phenomena such as the mode transformation, the lifetime of the radiative mode and the resonance frequency are revealed, and their mechanisms are explored. The results obtained in the paper will facilitate a general understanding of the features and the physical essence of the SPP transmission, not only for SW itself but also for other SPP transmission lines.
基金National Natural Science Foundation of China(Grant No.52175162,51805086 and 51975123)Natural Science Foundation of Fujian Province(Grant No.2019J01210)Health education joint project of Fujian Province(Grant No.2019-WJ-01)。
文摘Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites.
基金supported by the National Natural Science Foundation of China(grant number 51805086)the Natural Science Foundation of Fujian Province,China(grant number 2018J01763)。
文摘To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire materials(EPMWM)for vibration isolation was previously investigated.In this paper,a study focusing on the impact-resistance of EPMWM with the consideration of ambient temperature is presented.The quasi-static and low-velocity impact mechanical behavior of EPMWM under different temperatures(25℃-300℃)are systematically studied.The results of the static compression test show that the damping energy dissipation of EPMWM increases with temperature while the nonlinear damping characteristics are gradually enhanced.During the impact experiments,the impact energy loss rate of EPMWM was between 65%and 85%,while the temperatures increased from 25℃to 300℃.Moreover,under the same drop impact conditions,the overall deformation of EPMWM decreases in the temperature range of 100℃-200℃.On the other hand,the impact stiffness,energy dissipation,and impact loss factor of EPMWM significantly increase with temperature.This can be attributed to an increase in temperature,which changes the thermal expansion coefficient and contact state of the internal wire helixes.Consequently,the energy dissipation mode(dry friction,air damping,and plastic deformation)of EPMWM is also altered.Therefore,the EPMWM may act as a potential candidate material for superior energy absorption applications.
基金National Natural Science Foundation of China(Grant Nos.52175162,51805086 and 51975123)Natural Science Foundation of Fujian Province,China(Grant No.2019J01210)Health Education Joint Project of Fujian Province,China(Grant No.2019-WJ-01).
文摘Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great significance to reveal the thermal response mechanism of EPMWM based on its complex structural effects.In the present work,virtual manufacturing technology(VMT)was developed to restore the physics-based 3D model of EPMWM.On this basis,the transient thermal analysis is carried out to explore the contact-relevant thermal behavior of EPMWM,and then the spiral unit containing unique structural information are further extracted and counted.In particular,the thermal resistance network is numerically constructed based on the spiral unit through the thermoelectric analogy method to accurately predict the effective thermal conductivity(ETC)of EPMWM.Finally,the thermal diffusivity and specific heat of the samples were obtained by the laser thermal analyzer to calculate the ETC and thermal insulation factor of interest.The results show that the ETC of EPMWM increases with increasing temperature or reducing density under the experimental conditions.The numerical prediction is consistent with the experimental result and the average error is less than 4%.
文摘We mainly investigated the effect of metallic wire grid on its optical property. At first, we give one simple model to deduce an expression which can describe the relationship of the optical property with the width of metallic wire grid. This expression could be used to calculate the reflectance of the metallic wire grid. We also give the corresponding computer simulation. Our simulation shows that the reflectance would increase when the width of metallic wire grid increase. The wider the metallic wire grid is, the higher the reflectance is. The reflectance would reach the maximum value only when the width is over the free path of electronic.
基金Project supported by the National Natural Science Foundation of China(Nos.11232008,11227801 and 11302082)the Doctoral Program of University of Jinan(No.XBS1307)
文摘In this study, the residual strain of a thin conductive metal wire on a polymer substrate after electrical failure is measured with SEM moir′e. Focused ion beam(FIB) milling is applied to fabricate micron moir′e gratings on the surfaces of constantan wires and the random phase shifting technique is used to process moir′e fringes. The virtual strain method is briefly introduced and used to calculate the real strain of specimens. In order to study the influence of a defect on the electrical failure of the constantan wire, experiments were conducted on two specimens, one with a crack, while the other one without any crack. By comparing the results, we found that the defect makes the critical beam current of electrical failure decrease. In addition, the specimens were subjected to compression after electrical failure, in agreement with the observed crack closure of the specimen. The successful results demonstrate that the moir′e method is effective to characterize the full-field deformation of constantan wires on the polymer membrane, and has a good potential for further application to the deformation measurement of thin films.
基金supported by the National Natural Science Foundation of China(No.51501047)China Postdoctoral Science Foundation(No.2016M590280)the Fundamental Research Funds for the Central Universities(Nos.HIT.NSRIF.20161,HIT.MKSTISP.201615)
文摘In the present work, the wire electrical discharge machining(WEDM) process of the 65 vol% SiCp/2024 Al composite prepared by pressure infiltration methods has been investigated. The microstructure of the machined composite was characterized by scanning electron microscope, the average surface roughness(Ra), X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy(TEM) techniques. Three zones from the surface to the interior(melting zone, heat affected zone and un-affected zone) were found in the machined composites, while the face of SiC particles on the surface toward the outside was ‘‘cut'' to be flat. Increase in Al and Si but decrease in C and O were observed in the core areas of the removed particles. Si phase, which was generated due to the decomposition of SiC, was detected after the WEDM process. The irregular and spherical particles were further observed by TEM. Based on the microstructure observation, it is suggested that the machining mechanism of 65 vol% SiCp/2024 Al composite was the combination of the melting of Al matrix and the decomposition of SiC particles.
基金supported by the Young Talent Program of Guangzhou University(RQ2020077)China Biosafety Research Special Program(20SWAQX40)Guangdong Major Project of Basic and Applied Basic Research,China(2020B1515120092)。