Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological ...Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention.展开更多
Microseismic monitoring technology has become an important technique to assess stability of rock mass in metal mines.Due to the special characteristics of underground metal mines in China,including the high tectonic s...Microseismic monitoring technology has become an important technique to assess stability of rock mass in metal mines.Due to the special characteristics of underground metal mines in China,including the high tectonic stress,irregular shape and existence of ore body,and complex mining methods,the application of microseismic technology is more diverse in China compared to other countries,and is more challenging than in other underground structures such as tunnels,hydropower stations and coal mines.Apart from assessing rock mass stability and ground pressure hazards induced by mining process,blasting,water inrush and large scale goaf,microseismic technology is also used to monitor illegal mining,and track personnel location during rescue work.Moreover,microseismic data have been used to optimize mining parameters in some metal mines.The technology is increasingly used to investigate cracking mechanism in the design of rock mass supports.In this paper,the application,research development and related achievements of microseismic technology in underground metal mines in China are summarized.By considering underground mines from the perspective of informatization,automation and intelligentization,future studies should focus on intelligent microseismic data processing method,e.g.,signal identification of microseismic and precise location algorithm,and on the research and development of microseismic equipment.In addition,integrated monitoring and collaborative analysis for rock mass response caused by mining disturbance will have good prospects for future development.展开更多
Ventilation system is significant in underground metal mine of alpine region.Reasonable evaluation of ventilation effectiveness will lead to a practical improvement for the maintenance and management of ventilation sy...Ventilation system is significant in underground metal mine of alpine region.Reasonable evaluation of ventilation effectiveness will lead to a practical improvement for the maintenance and management of ventilation system.However,it is difficult to make an effective evaluation of ventilation system due to the lack of classification criteria with respect to underground metal mine in alpine region.This paper proposes a novel evaluation method called the cloud model-clustering analysis(CMCA).Cloud model(CM)is utilized to process collected data of ventilation system,and they are converted into cloud descriptors by CM.Cloud similarity(CS)based Euclidean distance(ED)is proposed to make clustering analysis of assessed samples.Then the classification of assessed samples will be identified by clustering analysis results.A case study is developed based on CMCA.Evaluation results show that ventilation effectiveness can be well classified.Moreover,CM is used alone to make comparison of evaluation results obtained by CMCA.Then the availability and validity of CMCA is verified.Meanwhile,difference of CS based ED and classical ED is analyzed.Two new clustering analysis methods are introduced to make comparison with CMCA.Then the ability of proposed CMCA to meet evaluation requirements of ventilation system is verified.展开更多
In order to maximize the overall economic gain from a metal mine operation, selection of cutoff grades must consider two important aspects: the time value of money and the spatial variation of the grade distribution i...In order to maximize the overall economic gain from a metal mine operation, selection of cutoff grades must consider two important aspects: the time value of money and the spatial variation of the grade distribution in the deposit. That is, cutoff grade selection must be dynamic with respect to both time and space. A newly developed method that fulfills these requirements is presented. In this method, the deposit or a portion of it under study is divided into "decision units" based on the mining method and sample data. The statistical grade distribution and the grade-tonnage relationship of each decision unit are then computed based on the samples falling in the unit. Each decision unit with its grade-tonnage relationship is considered as a stage in a dynamic programming scheme and the problem is solved by applying a forward dynamic programming based algorithm with an objective function of maximizing the overall net present value (NPV). A software package is developed for the method and applied to an underground copper mine in Africa.展开更多
In order to ensure overall optimization of the underground metal mine production scale, multidisciplinary design optimization model of production scale which covers the subsystem objective function of income of produc...In order to ensure overall optimization of the underground metal mine production scale, multidisciplinary design optimization model of production scale which covers the subsystem objective function of income of production, safety and environmental impact in the underground metal mine was established by using multidisciplinary design optimization method. The coupling effects from various disciplines were fully considered, and adaptive mutative scale chaos immunization optimization algorithm was adopted to solve multidisciplinary design optimization model of underground metal mine production scale. Practical results show that multidisciplinary design optimization on production scale of an underground lead and zinc mine reflect the actual operating conditions more realistically, the production scale is about 1.25 Mt/a (Lead and zinc metal content of 160 000 t/a), the economic life is approximately 14 a, corresponding coefficient of production profits can be increased to 15.13%, safety factor can be increased to 5.4% and environmental impact coefficient can be reduced by 9.52%.展开更多
A prediction method of strata movement in underground metal mines is put forward, in which fuzzy BP neural network is applied. The results show that there is a strong nonlinear relation between the selected factors an...A prediction method of strata movement in underground metal mines is put forward, in which fuzzy BP neural network is applied. The results show that there is a strong nonlinear relation between the selected factors and strata movement angle, the anticipant and the actual output results are very similar. It is proved that the numerical value of movement angle is correlated with the selected factors in theory. The scope of strata and surface movement due to mining can be predicted. This research provides a thought to study the movement scope of strata due to mining.展开更多
To investigate the presence of metal elements and assess their health risk for the populace in the Nandong Underground River Basin(NURB),we conducted an analysis of eleven common heavy metals in the water body.A Healt...To investigate the presence of metal elements and assess their health risk for the populace in the Nandong Underground River Basin(NURB),we conducted an analysis of eleven common heavy metals in the water body.A Health risk assessment(HRA)model was employed to analyze 84 water samples from the NURB.The detection results revealed the following order of heavy metals concentrations:Fe>Al>Mn>Zn>As>Cd>Pb>Cr>Ni>Cu>Hg.Correlation analysis indicated a certain similarity in material source and migration transformation among these eleven metal elements.Our study identified that the health risks for local residents exposed to metal elements in the water of NURB primarily stem from carcinogenic risk(10^(−6)–10^(−4)a^(−1))through the drinking water pathway.Moreover,the health risk of heavy metal exposure for children through drinking water was notably higher than for adults.The maximum health risks of Cr in both underground and surface water exceeded the recommendation standard(5.0×10^(−5)a^(−1))from ICRP,surpassing the values recommended by the Swedish Environmental Protection Agency,the Dutch Ministry of Construction and Environment and the British Royal Society(5.0×10^(−6)a^(−1)).The results of the health risk assessment indicate that Cr in the water of NURB is the primary source of carcinogenic risk for local residents,followed by Cd and As.Consequently,it is imperative to control these three carcinogenic metals when the water was used as drinking water resource.展开更多
Underground mining always create voids.These voids can cause subsidence of surface.So it is always a demand to fill the void in such a manner that the effect of underground mining can be minimized.Void filling using m...Underground mining always create voids.These voids can cause subsidence of surface.So it is always a demand to fill the void in such a manner that the effect of underground mining can be minimized.Void filling using mill tailings especially in metal mining is one of the best techniques.The tailings produced in milling process have traditionally been disposed in tailing ponds creating a waste disposal and environmental problems in terms of land degradation,air and water pollution,etc.This disposal practice is more acute in the metal milling industry where the fine grinding,required for value liberation,results in the production of very fine tailings in large percentage.This paper includes discussions on the effectiveness of different paste mixes with varying cement contents in paste backfilling operations.The results revealed that material composition and use of super plasticizer strongly influenced the strength of cemented backfill.展开更多
Oman is located in the tropic of Cancer with extremely hot temperatures ranging between 15°C-25°C in winter and 30 - 48 in the summer with low rainfall. Most of the water source is desalinated seawater...Oman is located in the tropic of Cancer with extremely hot temperatures ranging between 15°C-25°C in winter and 30 - 48 in the summer with low rainfall. Most of the water source is desalinated seawater. Recycling of sewage effluent is a common practice used for farming, public parks and industry. The dried sludge product is used as fertilizer. The highly concentrated sludge with heavy metals is either incinerated or buried in landfills. Heavy metals were analyzed and compared in treated sewage effluent (TSE), slurry sludge, dried sludge, landfill and underground water. Heavy metal concentrations were analyzed using the inductive coupled plasma optical emission spectrometer (ICP-EOS). All samples contained the same heavy metals with different concentrations. The heaviest concentrations were Zn, Cu, Cr and Ni with traces of V, Cd, Pb and Ba. TSE and sludge were the main sources of landfill and underground water contamination. Due to water evaporation, heavy metals concentrations in sludge were higher compared to TSE and underground water. Dried sludge and landfill contained higher concentrations than the others. Based on this investigation, it appears that the source of heavy metals is from TSE originated mainly in industries. If the infiltration of heavy metals to soil and underground water continues, it will be a serious environmental and health problem in the future.展开更多
Metal derivative/graphitic carbon nitride(g-C_(3)N_(4))association is found promising in providing sustainable hydrogen production by photocatalytic water splitting process.Number of works reported on the synthesis an...Metal derivative/graphitic carbon nitride(g-C_(3)N_(4))association is found promising in providing sustainable hydrogen production by photocatalytic water splitting process.Number of works reported on the synthesis and application of various metal based g-C_(3)N_(4)composites are increasing day by day.Mechanism of charge separation varies according to the metal candidate that gets couple with g-C_(3)N_(4).The present article thus explores the interesting chemistry behind various metal based heterojunction and demonstrates the charge separation route.A thorough investigation has been done on the current research trend in the area.As many metal free g-C_(3)N_(4)composites are reported nowadays as an alternative to metal derivatives,here compares metallic and metal free derivatives of g-C_(3)N_(4)based on four critical requirements of an industrial catalyst,ie,activity,stability,cost and toxicity.Challenges and future direction in the area are also discussed with significance.The systematic discussion and schematic illustration of charge transfer process in different heterojunctions with reference to the reported systems,given in the article can definitely contribute to the design and development of more efficient g-C_(3)N_(4)based heterojunctions in future for hydrogen production application.展开更多
基金Project(52204084)supported by the National Natural Science Foundation of ChinaProject(FRF-IDRY-GD22-002)supported by the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China+2 种基金Project(QNXM20220009)supported by the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,ChinaProjects(2022YFC2905600,2022YFC3004601)supported by the National Key R&D Program of ChinaProject(2023XAGG0061)supported by the Science,Technology&Innovation Project of Xiongan New Area,China。
文摘Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention.
基金Projects(51974059,52174142)supported by the National Natural Science Foundation of ChinaProject(2017YFC0602904)supported by the National Key Research and Development Program of ChinaProject(N180115010)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Microseismic monitoring technology has become an important technique to assess stability of rock mass in metal mines.Due to the special characteristics of underground metal mines in China,including the high tectonic stress,irregular shape and existence of ore body,and complex mining methods,the application of microseismic technology is more diverse in China compared to other countries,and is more challenging than in other underground structures such as tunnels,hydropower stations and coal mines.Apart from assessing rock mass stability and ground pressure hazards induced by mining process,blasting,water inrush and large scale goaf,microseismic technology is also used to monitor illegal mining,and track personnel location during rescue work.Moreover,microseismic data have been used to optimize mining parameters in some metal mines.The technology is increasingly used to investigate cracking mechanism in the design of rock mass supports.In this paper,the application,research development and related achievements of microseismic technology in underground metal mines in China are summarized.By considering underground mines from the perspective of informatization,automation and intelligentization,future studies should focus on intelligent microseismic data processing method,e.g.,signal identification of microseismic and precise location algorithm,and on the research and development of microseismic equipment.In addition,integrated monitoring and collaborative analysis for rock mass response caused by mining disturbance will have good prospects for future development.
基金Project(2018YFC0808404)supported by National Key Research and Development Program of China。
文摘Ventilation system is significant in underground metal mine of alpine region.Reasonable evaluation of ventilation effectiveness will lead to a practical improvement for the maintenance and management of ventilation system.However,it is difficult to make an effective evaluation of ventilation system due to the lack of classification criteria with respect to underground metal mine in alpine region.This paper proposes a novel evaluation method called the cloud model-clustering analysis(CMCA).Cloud model(CM)is utilized to process collected data of ventilation system,and they are converted into cloud descriptors by CM.Cloud similarity(CS)based Euclidean distance(ED)is proposed to make clustering analysis of assessed samples.Then the classification of assessed samples will be identified by clustering analysis results.A case study is developed based on CMCA.Evaluation results show that ventilation effectiveness can be well classified.Moreover,CM is used alone to make comparison of evaluation results obtained by CMCA.Then the availability and validity of CMCA is verified.Meanwhile,difference of CS based ED and classical ED is analyzed.Two new clustering analysis methods are introduced to make comparison with CMCA.Then the ability of proposed CMCA to meet evaluation requirements of ventilation system is verified.
基金Project(50974041) supported by the National Natural Science Foundation of China Project(20090450112) supported by the Postdoctoral Foundation of ChinaProject(20093910) supported by the Natural Science Foundation of Liaoning Province, China
文摘In order to maximize the overall economic gain from a metal mine operation, selection of cutoff grades must consider two important aspects: the time value of money and the spatial variation of the grade distribution in the deposit. That is, cutoff grade selection must be dynamic with respect to both time and space. A newly developed method that fulfills these requirements is presented. In this method, the deposit or a portion of it under study is divided into "decision units" based on the mining method and sample data. The statistical grade distribution and the grade-tonnage relationship of each decision unit are then computed based on the samples falling in the unit. Each decision unit with its grade-tonnage relationship is considered as a stage in a dynamic programming scheme and the problem is solved by applying a forward dynamic programming based algorithm with an objective function of maximizing the overall net present value (NPV). A software package is developed for the method and applied to an underground copper mine in Africa.
基金Project(2012BAK09B02-05) supported by the National "Twelfth Five-year" Science & Technology Support Plan of China
文摘In order to ensure overall optimization of the underground metal mine production scale, multidisciplinary design optimization model of production scale which covers the subsystem objective function of income of production, safety and environmental impact in the underground metal mine was established by using multidisciplinary design optimization method. The coupling effects from various disciplines were fully considered, and adaptive mutative scale chaos immunization optimization algorithm was adopted to solve multidisciplinary design optimization model of underground metal mine production scale. Practical results show that multidisciplinary design optimization on production scale of an underground lead and zinc mine reflect the actual operating conditions more realistically, the production scale is about 1.25 Mt/a (Lead and zinc metal content of 160 000 t/a), the economic life is approximately 14 a, corresponding coefficient of production profits can be increased to 15.13%, safety factor can be increased to 5.4% and environmental impact coefficient can be reduced by 9.52%.
文摘A prediction method of strata movement in underground metal mines is put forward, in which fuzzy BP neural network is applied. The results show that there is a strong nonlinear relation between the selected factors and strata movement angle, the anticipant and the actual output results are very similar. It is proved that the numerical value of movement angle is correlated with the selected factors in theory. The scope of strata and surface movement due to mining can be predicted. This research provides a thought to study the movement scope of strata due to mining.
基金supported from the National Key Research and Development Program of China(No.2022YFF1302901)the Key Laboratory Construction Project of Guangxi(No.19-185-7)the Foundation for Hebei Education Department(No.2022QNJS05).
文摘To investigate the presence of metal elements and assess their health risk for the populace in the Nandong Underground River Basin(NURB),we conducted an analysis of eleven common heavy metals in the water body.A Health risk assessment(HRA)model was employed to analyze 84 water samples from the NURB.The detection results revealed the following order of heavy metals concentrations:Fe>Al>Mn>Zn>As>Cd>Pb>Cr>Ni>Cu>Hg.Correlation analysis indicated a certain similarity in material source and migration transformation among these eleven metal elements.Our study identified that the health risks for local residents exposed to metal elements in the water of NURB primarily stem from carcinogenic risk(10^(−6)–10^(−4)a^(−1))through the drinking water pathway.Moreover,the health risk of heavy metal exposure for children through drinking water was notably higher than for adults.The maximum health risks of Cr in both underground and surface water exceeded the recommendation standard(5.0×10^(−5)a^(−1))from ICRP,surpassing the values recommended by the Swedish Environmental Protection Agency,the Dutch Ministry of Construction and Environment and the British Royal Society(5.0×10^(−6)a^(−1)).The results of the health risk assessment indicate that Cr in the water of NURB is the primary source of carcinogenic risk for local residents,followed by Cd and As.Consequently,it is imperative to control these three carcinogenic metals when the water was used as drinking water resource.
文摘Underground mining always create voids.These voids can cause subsidence of surface.So it is always a demand to fill the void in such a manner that the effect of underground mining can be minimized.Void filling using mill tailings especially in metal mining is one of the best techniques.The tailings produced in milling process have traditionally been disposed in tailing ponds creating a waste disposal and environmental problems in terms of land degradation,air and water pollution,etc.This disposal practice is more acute in the metal milling industry where the fine grinding,required for value liberation,results in the production of very fine tailings in large percentage.This paper includes discussions on the effectiveness of different paste mixes with varying cement contents in paste backfilling operations.The results revealed that material composition and use of super plasticizer strongly influenced the strength of cemented backfill.
文摘Oman is located in the tropic of Cancer with extremely hot temperatures ranging between 15°C-25°C in winter and 30 - 48 in the summer with low rainfall. Most of the water source is desalinated seawater. Recycling of sewage effluent is a common practice used for farming, public parks and industry. The dried sludge product is used as fertilizer. The highly concentrated sludge with heavy metals is either incinerated or buried in landfills. Heavy metals were analyzed and compared in treated sewage effluent (TSE), slurry sludge, dried sludge, landfill and underground water. Heavy metal concentrations were analyzed using the inductive coupled plasma optical emission spectrometer (ICP-EOS). All samples contained the same heavy metals with different concentrations. The heaviest concentrations were Zn, Cu, Cr and Ni with traces of V, Cd, Pb and Ba. TSE and sludge were the main sources of landfill and underground water contamination. Due to water evaporation, heavy metals concentrations in sludge were higher compared to TSE and underground water. Dried sludge and landfill contained higher concentrations than the others. Based on this investigation, it appears that the source of heavy metals is from TSE originated mainly in industries. If the infiltration of heavy metals to soil and underground water continues, it will be a serious environmental and health problem in the future.
文摘Metal derivative/graphitic carbon nitride(g-C_(3)N_(4))association is found promising in providing sustainable hydrogen production by photocatalytic water splitting process.Number of works reported on the synthesis and application of various metal based g-C_(3)N_(4)composites are increasing day by day.Mechanism of charge separation varies according to the metal candidate that gets couple with g-C_(3)N_(4).The present article thus explores the interesting chemistry behind various metal based heterojunction and demonstrates the charge separation route.A thorough investigation has been done on the current research trend in the area.As many metal free g-C_(3)N_(4)composites are reported nowadays as an alternative to metal derivatives,here compares metallic and metal free derivatives of g-C_(3)N_(4)based on four critical requirements of an industrial catalyst,ie,activity,stability,cost and toxicity.Challenges and future direction in the area are also discussed with significance.The systematic discussion and schematic illustration of charge transfer process in different heterojunctions with reference to the reported systems,given in the article can definitely contribute to the design and development of more efficient g-C_(3)N_(4)based heterojunctions in future for hydrogen production application.