The adsorption of isolated alkali metal atoms (Li, Na, K, Rb, and Cs) on defect-free sur- face of MgO(001) has been systemically investigated with density functional theory using a pseudopotential plane-wave appro...The adsorption of isolated alkali metal atoms (Li, Na, K, Rb, and Cs) on defect-free sur- face of MgO(001) has been systemically investigated with density functional theory using a pseudopotential plane-wave approach. The adsorption energy calculated is about -0.72 eV for the lithium on top of the surface O site and about one third of this value for the other alkali metals. The relatively strong interaction of Li with the surface O can be explained by a more covalent bonding involved, evidenced by results of both the projected density of states and the charge density difference. The bonding mechanism is discussed in detail for all alkali metals.展开更多
Two types of small iron clusters supported on γ-Al2O3-RT(dehydroxylated at room temperature) and γ-Al2O3-800 (dehydroxylated at 800 ℃) were prepared by solvated metal atom impregnation (SMAI) techniques. The ...Two types of small iron clusters supported on γ-Al2O3-RT(dehydroxylated at room temperature) and γ-Al2O3-800 (dehydroxylated at 800 ℃) were prepared by solvated metal atom impregnation (SMAI) techniques. The iron atom precursor complex, bis(toluene)iron(0) formed in the metal atom reactor, was impregnated into γ-Al2O3 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by TEM, Mǒssbauer, and chemisorption measurements, and the results show that higher concentration of surface hydroxyl groups of γ-Al2O3-RT favors the formation of more positively charged supported iron cluster Fen/γ-Al2O3-RT, and the lower concentration of surface hydroxyl groups of γ-Al2O3-800 favors the formation of basically neutral supported iron cluster Fen/γ-Al2O3-800. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the rapid decomposition of precursor complex, bis(toluene)iron(0), and favors the formation of relatively large iron cluster. Consequently, these two types of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fen/γ-Al2O3-RT in F-T reaction is similar to that of the unreduced γ-Fe2O3 and that of Fen/γ-Al2O3-800 is similar to that of the reduced α-Fe2O3.展开更多
A semi-empirical atomic structure model method is developed in the framework of a relativistic case. This method starts from Dirac-Fock calculations using B-spline basis set. The core-valence electron correction is th...A semi-empirical atomic structure model method is developed in the framework of a relativistic case. This method starts from Dirac-Fock calculations using B-spline basis set. The core-valence electron correction is then treated in a semiempirical core polarization potential. As an application, the polarization properties of alkali metal atoms, including the static polarizabilities and long-range two-body dispersion coefficients, have been calculated. Our results are in good agreement with the results obtained from ab initio relativistic many-body perturbation method and the available experimental measurements.展开更多
A condition for local moment formation in metals derived by Stoddart and March (Ann. Phys. NY 1972 64, 174) is first used to discuss the ferromagnetism of body-centred-cubic Fe. A less detailed discussion is also ...A condition for local moment formation in metals derived by Stoddart and March (Ann. Phys. NY 1972 64, 174) is first used to discuss the ferromagnetism of body-centred-cubic Fe. A less detailed discussion is also added on Ni and Co. This leads into a treatment of the non- linear response of such 3d ferromagnets to dilute substitutional impurities. Antiferromagnets responding to local changes in the exchange field caused by such impurities are also studied, Mn in Cr being one such system discussed. The paper concludes with a brief summary of clusters of transition metal atoms, with most attention devoted to Cr and to Mn.展开更多
order to assess the promotional effects of La3+ on CO hydrogenation of Co/SiO2 catalyst, solvated metal atom impregnation (SMAI) method was used to prepare unpromoted 10% (mass fraction) Co/SiO2 and a series of La3+-p...order to assess the promotional effects of La3+ on CO hydrogenation of Co/SiO2 catalyst, solvated metal atom impregnation (SMAI) method was used to prepare unpromoted 10% (mass fraction) Co/SiO2 and a series of La3+-promoted 10% (mass fraction) Co/SiO2 catalyst with different La/Co atomic ratios (0.1, 0.3, 0.5). X-ray diffraction (XRD), and CO chemisorption measurements show that the cobalt particle size decreases as the La/Co ratios increase. X-ray photoelectron spectrescopy indicates that cobalt is in zero-valent state for all the samples. Catalytic test shows that the catalytic activity of La3+-promoted Co/SiO2 in CO hydrogenation is higher than that of unpromoted Co/SiO2, and enhances with the La/Co ratios increase. La3+ promotion also causes the enhanced selectivity of Co/SiO2 catalyst for higher hydrocarbon products.展开更多
A plane wave density functional theory method was used to investigate the adsorption properties of isolated alkali metal atoms, including Li, Na, K, Rb and Cs on-top of the F 0 s defective center of MgO(001) surface...A plane wave density functional theory method was used to investigate the adsorption properties of isolated alkali metal atoms, including Li, Na, K, Rb and Cs on-top of the F 0 s defective center of MgO(001) surface. Among all the alkali metals, the lithium atom binds most strongly with the highest adsorption energy of 0.67 eV and the shortest distance of about 0.257 nm between metal and the surface, the binding energy for the sodium atom comes second, and just half of this value for the other alkali metal atoms. The relatively strong interaction of Li with the F 0 s center can be explained by a more covalent bonding involved, evidenced by results of both the projected density of states and the projected charge density. The bonding mechanism is discussed in detail.展开更多
D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are ...D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are very highly dispersed and display superparamagnetic behaviour. Ni-Cu alloy clusters were found to be formed. The surface compositions are different from the bulk concentrations. In contrast with the surface enrichment in copper generally observed on conventional Ni-Cu catalysts, the surfaces of these catalysts are enriched in nickel. The nickel is in both zero and valent states, while copper is mainly in metallic state. Catalytic data show that the formation of Ni-Cu alloy clusters has a profound effect on the catalytic activities of the catalysts in the hydrogenation of furfural. The activity of the Ni:Cu ratio of one bimetallic catalysts is much higher than that of the Ni or Cu monometallic catalyst.展开更多
The adsorptions of a series of alkali metal (AM) atoms, Li, Na, K, Rb and Cs, on a Si(001)-2 × 2 surface at 0.25 monolayer coverage have been investigated systematically by means of density functional theory ...The adsorptions of a series of alkali metal (AM) atoms, Li, Na, K, Rb and Cs, on a Si(001)-2 × 2 surface at 0.25 monolayer coverage have been investigated systematically by means of density functional theory calculations. The effects of the size of AM atoms on the Si(001) surface are focused in the present work by examining the most stable adsorption site, diffusion path, band structure, charge transfer, and the change of work function for different adsorbates. Our results suggest that, when the interactions among AM atoms are neglectable, these AM atoms can be divided into three classes. For Li and Na atoms, they show unique site preferences, and correspond to the strongest and weakest AM-Si interactions, respectively. In particular, the band structure calculation indicates that the nature of Li-Si interaction differs significantly from others. For the adsorptions of other AM atoms with larger size (namely, K, Rb and Cs), the similarities in the atomic and electronic structures are observed, implying that the atom size has little influence on the adsorption behavior for these large AM atoms on the Si(001) surface.展开更多
One of the themes of modern molecular reac tion dynamics is to charac terize elementary chemical reactions from“quan tum state to quan tum stat e”,and the study of molecular reaction dynamics in excited states can h...One of the themes of modern molecular reac tion dynamics is to charac terize elementary chemical reactions from“quan tum state to quan tum stat e”,and the study of molecular reaction dynamics in excited states can help test the validi ty of modern chemical t heories and provide met hods to cont rol chemical reactions.The subject of this review is to describe the recent experimental techniques used to study the reaction dynamics of metal atoms in the gas phase.Through these techniques,information such as the internal energy distribution and angular distribution of the nascent products or the three-dimensional stereodynamic reactivity can be obtained.In addition,by preparing metal at oms wi th specific exci ted elec tronic states or orbi tal arrangemen ts,information about the reactivity of the electronic states enriches the relevant understanding of the electron transfer mechanism in metal reaction dynamics.展开更多
The adsorption of metal atoms, Ni, Pd, Pt, Cu, Ag and Au, at low-coordinated edge and corner oxygen sites of MgO (001) surface has been studied theoretically by using density functional method with cluster models embe...The adsorption of metal atoms, Ni, Pd, Pt, Cu, Ag and Au, at low-coordinated edge and corner oxygen sites of MgO (001) surface has been studied theoretically by using density functional method with cluster models embedded in a large array of point charges. For comparison, the interaction of metal atoms with perfect regular oxygen site of MgO (001) surface was also calculated. As regards these metal atoms adsorbed at perfect oxygen sites of MgO (001) surface, Cu, Ag and Au are very weakly bonded to the surface of MgO; Ni, Pd and Pt, on the other hand, exhibit strong interactions with perfect oxygen sites of MgO (001) surface; the large adsorption energy shows that there exist strong bonds formed between these metal atoms with surface oxygen sites. For the metal atoms adsorbed at edge and corner sites, the adsorption energy is much increased, consistent with our previous study of CO and Cl2 adsorption on MgO (001) surface. This illustrates that the low-coordinated sites, especially corner site, are more advantageous positions for those metal atoms adsorbed on MgO (001) surface. The Mulliken population analysis indicates that the electron transferred from MgO to the metal atoms were increased with the decrease of the coordination numbers, which may be one of the reasons for changing catalytic efficiency and selectivity of the metal particles supported by MgO.展开更多
Two kinds of small iron clusters supported on SiO2-200 (dehydroxylated at 200℃ and SiO2-600 (de-hydroxylated at 600℃) were prepared by Solvated Metal Atom Impregnation (SMAI) techniques. The iron atom precursor comp...Two kinds of small iron clusters supported on SiO2-200 (dehydroxylated at 200℃ and SiO2-600 (de-hydroxylated at 600℃) were prepared by Solvated Metal Atom Impregnation (SMAI) techniques. The iron atom precursor complex, bis (toluene) iron(0) formed in the metal atom reactor, was impregnated into SiO2 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by THM, Mosbauer and chemisorption measurements, and the resules show that higher concentration of surface hydroxyl groups of SiO2-200 favours the formation of more positively charged support iron cluster Fen/SiO2-200 and the lower concentration of surface hydroxyl groups of SiO2-600 favours the formation of basically neutral supported iron cluster Fe2/SiO2-600. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the precursor complex,bis(toluene) fron(0), to decompose more rapidly, and favours the formation of relatively large iron cluster. As a consequence, these two kinds of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fe/SiO2-200 in F-T reaction is similar to that of the unreduced a-Fe2O2, while Fe2/SiO2 -600 is similar to that of reduced α-Fe2O2.展开更多
An approximation formula is developed to determine the tune-out wavelengths for the ground states of the alkalinemetal atoms lithium,sodium and cesium from the existing relativistic reduced matrix elements and experim...An approximation formula is developed to determine the tune-out wavelengths for the ground states of the alkalinemetal atoms lithium,sodium and cesium from the existing relativistic reduced matrix elements and experimental energies.The first longest tune-out wavelengths for Li,Na,and Cs are 670.971 nm,589.557 nm,and 880.237 nm,respectively.This is in good agreement with the previous high precise results of 670.971626 nm,589.5565 nm,and 880.25 nm from the relativistic all-order many-body perturbation theory(RMBPT) calculation[Phys.Rev.A 84 043401(2011)].展开更多
By using first-principles calculations within the framework of density functional theory,the electronic and magnetic properties of 3d transitional metal(TM) atoms(from Sc to Zn) adsorbed monolayer Ga As nanosheets...By using first-principles calculations within the framework of density functional theory,the electronic and magnetic properties of 3d transitional metal(TM) atoms(from Sc to Zn) adsorbed monolayer Ga As nanosheets(Ga As NSs) are systematically investigated.Upon TM atom adsorption,Ga As NS,which is a nonmagnetic semiconductor,can be tuned into a magnetic semiconductor(Sc,V,and Fe adsorption),a half-metal(Mn adsorption),or a metal(Co and Cu adsorption).Our calculations show that the strong p–d hybridization between the 3d orbit of TM atoms and the 4p orbit of neighboring As atoms is responsible for the formation of chemical bonds and the origin of magnetism in the Ga As NSs with Sc,V,and Fe adsorption.However,the Mn 3d orbit with more unpaired electrons hybridizes not only with the As 4p orbit but also with the Ga 4p orbit,resulting in a stronger exchange interaction.Our results may be useful for electronic and magnetic applications of Ga As NS-based materials.展开更多
The collision of alkali-metal atoms at ultralow temperatures have been studied, The Scattering lengths and the effective range are calculated for 7Li, 23Na, 39K, 87Rb, and 133Cs.
We report a newly constructed laser ablation crossed molecular beam apparatus, equipped with time-sliced velocity map imaging technique, to study state-to-state metal atom reaction dynamics. Supersonic metal atomic be...We report a newly constructed laser ablation crossed molecular beam apparatus, equipped with time-sliced velocity map imaging technique, to study state-to-state metal atom reaction dynamics. Supersonic metal atomic beam is generated by laser vaporization of metal rod, and free expansion design without gas flow channel has been employed to obtain a good quality of metal atomic beam. We have chosen the crossed-beam reaction Al+O2 to test the performance of the new apparatus. Two-rotational-states selected AIO(X^2∑+, v=0, N and N+I4) products can be imaged via P(N) and R(N+14) branches of the Av=l band at the same wavelength, during (1+1) resonance-enhanced multi-photon ionization through the AIO(D2E+) intermediate state. In our experiment at 244.145 nm for simultaneous transitions of P(15) and R(29) branch, two rings in slice image were clearly distinguishable, corresponding to the AiO(v=0, N=IS) and AIO(v=0, N=29) states respectively. The energy difference between the two rotational levels is 403 cm^-1. The success of two states resolved in our apparatus suggests a better collisional energy resolution compared with the recent research study [J. Chem. Phys. 140, 214304 (2014)].展开更多
Atomically dispersed catalysts have attracted attention in energy conversion applications because their efficiency and chemoselectivity for special catalysis are superior to those of traditional catalysts. However, th...Atomically dispersed catalysts have attracted attention in energy conversion applications because their efficiency and chemoselectivity for special catalysis are superior to those of traditional catalysts. However, they have limitations owing to the extremely low metal-loading content on supports, difficulty in the precise control of the metal location and amount as well as low stability at high temperatures. We prepared a highly doped single metal atom hybrid via a single-step thermal pyrolysis of glucose, dicyandiamide, and inorganic metal salts. High-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure spectroscopy (XAFS) revealed that nitrogen atoms doped into the graphene matrix were pivotal for metal atom stabilization by generating a metal-Nx coordination structure. Due to the strong anchoring effect of the graphene matrix, the metal loading content was over 4 wt.% in the isolated atomic hybrid (the Pt content was as high as 9.26 wt.% in the Pt-doped hybrid). Furthermore, the single iron-doped hybrid (Fe@N-doped graphene) showed a remarkable electrocatalytic performance for the oxygen reduction reaction. The peak power density was - 199 mW·cm-2 at a current density of 310 mA·cm-2 and superior to that of a commercial Pt/C catalyst when it was used as a cathode catalyst in assembled zinc-air batteries. This work offered a feasible approach to design and fabricate highly doped single metal atoms (SMAs) catalysts for potential energy applications.展开更多
Carrier migration path and driving forces are two crucial factors for charge separation of heterojunction with efficient photoelectric response from the thermodynamic and kinetic perspectives,respectively.Constructing...Carrier migration path and driving forces are two crucial factors for charge separation of heterojunction with efficient photoelectric response from the thermodynamic and kinetic perspectives,respectively.Constructing the S-scheme heterojunction and achieving an efficient migration path for space charge separation have aroused great interest,while a thorough insight into tuning interfacial band bending for S-scheme heterojunction is absent.Herein,we report a class of Zn atom-doped CeO_(2)/g-C_(3)N_(4) heterostructure for achieving a new carrier migration path conversion from inferior type-II to advanced S-scheme.Zn-dependent volcano-type plot for Zn-CeO_(2) is established to tune the Fermi level of CeO_(2).The built-in electric field for carrier flow dynamics strengthens when coupling with g-C_(3)N_(4),which significantly boosts the photoelectric response.Based on the intrinsic enzymelike activity of Zn-CeO_(2),we further demonstrate that the Zn-CeO_(2)/g-C_(3)N_(4) S-scheme heterojunction can be explored for constructing a sensitive nanozymatic photoelectrochemical biosensor for the detection of acetylcholinesterase.展开更多
Developing high performance and low-cost catalysts for oxygen reduction reaction(ORR)in challenging acid condition is vital for proton-exchange-membrane fuel cells(PEMFCs).Carbon-supported nonprecious metal single ato...Developing high performance and low-cost catalysts for oxygen reduction reaction(ORR)in challenging acid condition is vital for proton-exchange-membrane fuel cells(PEMFCs).Carbon-supported nonprecious metal single atom catalysts(SACs)have been identified as potential catalysts in the field.Great advance has been obtained in constructing diverse active sites of SACs for improving the performance and understanding the fundamental principles of regulating acid ORR performance.However,the ORR performance of SACs is still unsatisfactory.Importantly,microenvironment adjustment of SACs offers chance to promote the performance of acid ORR.In this review,acid ORR mechanism,attenuation mechanism and performance improvement strategies of SACs are presented.The strategies for promoting ORR activity of SACs include the adjustment of center metal and its microenvironment.The relationship of ORR performance and structure is discussed with the help of advanced experimental investigations and theoretical calculations,which will offer helpful direction for designing advanced SACs for ORR.展开更多
Atomically dispersed metals on N-doped carbon supports(M-N_(xCs)) have great potential applications in various fields.However,a precise understanding of the definitive relationship between the configuration of metal s...Atomically dispersed metals on N-doped carbon supports(M-N_(xCs)) have great potential applications in various fields.However,a precise understanding of the definitive relationship between the configuration of metal single atoms and the dielectric loss properties of M-N_(xCs) at the atomic-level is still lacking.Herein,we report a general approach to synthesize a series of three-dimensional(3D)honeycomb-like M-N_xC(M=Mn,Fe,Co,Cu,or Ni) containing metal single atoms.Experimental results indicate that 3D M-N_(xCs) exhibit a greatly enhanced dielectric loss compared with that of the NC matrix.Theoretical calculations demonstrate that the density of states of the d orbitals near the Fermi level is significantly increased and additional electrical dipoles are induced due to the destruction of the symmetry of the local microstructure,which enhances conductive loss and dipolar polarization loss of 3D M-N_(xCs),respectively.Consequently,these 3D M-N_(xCs) exhibit excellent electromagnetic wave absorption properties,outperforming the most commonly reported absorbers.This study systematically explains the mechanism of dielectric loss at the atomic level for the first time and is of significance to the rational design of high-efficiency electromagnetic wave absorbing materials containing metal single atoms.展开更多
文摘The adsorption of isolated alkali metal atoms (Li, Na, K, Rb, and Cs) on defect-free sur- face of MgO(001) has been systemically investigated with density functional theory using a pseudopotential plane-wave approach. The adsorption energy calculated is about -0.72 eV for the lithium on top of the surface O site and about one third of this value for the other alkali metals. The relatively strong interaction of Li with the surface O can be explained by a more covalent bonding involved, evidenced by results of both the projected density of states and the charge density difference. The bonding mechanism is discussed in detail for all alkali metals.
文摘Two types of small iron clusters supported on γ-Al2O3-RT(dehydroxylated at room temperature) and γ-Al2O3-800 (dehydroxylated at 800 ℃) were prepared by solvated metal atom impregnation (SMAI) techniques. The iron atom precursor complex, bis(toluene)iron(0) formed in the metal atom reactor, was impregnated into γ-Al2O3 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by TEM, Mǒssbauer, and chemisorption measurements, and the results show that higher concentration of surface hydroxyl groups of γ-Al2O3-RT favors the formation of more positively charged supported iron cluster Fen/γ-Al2O3-RT, and the lower concentration of surface hydroxyl groups of γ-Al2O3-800 favors the formation of basically neutral supported iron cluster Fen/γ-Al2O3-800. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the rapid decomposition of precursor complex, bis(toluene)iron(0), and favors the formation of relatively large iron cluster. Consequently, these two types of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fen/γ-Al2O3-RT in F-T reaction is similar to that of the unreduced γ-Fe2O3 and that of Fen/γ-Al2O3-800 is similar to that of the reduced α-Fe2O3.
基金supported by the National Basic Research Program of China(Grant No.2012CB821305)the National Natural Science Foundation of China(Grant Nos.11034009 and 11274246)
文摘A semi-empirical atomic structure model method is developed in the framework of a relativistic case. This method starts from Dirac-Fock calculations using B-spline basis set. The core-valence electron correction is then treated in a semiempirical core polarization potential. As an application, the polarization properties of alkali metal atoms, including the static polarizabilities and long-range two-body dispersion coefficients, have been calculated. Our results are in good agreement with the results obtained from ab initio relativistic many-body perturbation method and the available experimental measurements.
文摘A condition for local moment formation in metals derived by Stoddart and March (Ann. Phys. NY 1972 64, 174) is first used to discuss the ferromagnetism of body-centred-cubic Fe. A less detailed discussion is also added on Ni and Co. This leads into a treatment of the non- linear response of such 3d ferromagnets to dilute substitutional impurities. Antiferromagnets responding to local changes in the exchange field caused by such impurities are also studied, Mn in Cr being one such system discussed. The paper concludes with a brief summary of clusters of transition metal atoms, with most attention devoted to Cr and to Mn.
文摘order to assess the promotional effects of La3+ on CO hydrogenation of Co/SiO2 catalyst, solvated metal atom impregnation (SMAI) method was used to prepare unpromoted 10% (mass fraction) Co/SiO2 and a series of La3+-promoted 10% (mass fraction) Co/SiO2 catalyst with different La/Co atomic ratios (0.1, 0.3, 0.5). X-ray diffraction (XRD), and CO chemisorption measurements show that the cobalt particle size decreases as the La/Co ratios increase. X-ray photoelectron spectrescopy indicates that cobalt is in zero-valent state for all the samples. Catalytic test shows that the catalytic activity of La3+-promoted Co/SiO2 in CO hydrogenation is higher than that of unpromoted Co/SiO2, and enhances with the La/Co ratios increase. La3+ promotion also causes the enhanced selectivity of Co/SiO2 catalyst for higher hydrocarbon products.
基金supported by the National Natural Science Foundation of China (Grant No.60877017)the Innovation Program of Shanghai Municipal Education Commission (Grant No.08YZ04)
文摘A plane wave density functional theory method was used to investigate the adsorption properties of isolated alkali metal atoms, including Li, Na, K, Rb and Cs on-top of the F 0 s defective center of MgO(001) surface. Among all the alkali metals, the lithium atom binds most strongly with the highest adsorption energy of 0.67 eV and the shortest distance of about 0.257 nm between metal and the surface, the binding energy for the sodium atom comes second, and just half of this value for the other alkali metal atoms. The relatively strong interaction of Li with the F 0 s center can be explained by a more covalent bonding involved, evidenced by results of both the projected density of states and the projected charge density. The bonding mechanism is discussed in detail.
文摘D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are very highly dispersed and display superparamagnetic behaviour. Ni-Cu alloy clusters were found to be formed. The surface compositions are different from the bulk concentrations. In contrast with the surface enrichment in copper generally observed on conventional Ni-Cu catalysts, the surfaces of these catalysts are enriched in nickel. The nickel is in both zero and valent states, while copper is mainly in metallic state. Catalytic data show that the formation of Ni-Cu alloy clusters has a profound effect on the catalytic activities of the catalysts in the hydrogenation of furfural. The activity of the Ni:Cu ratio of one bimetallic catalysts is much higher than that of the Ni or Cu monometallic catalyst.
基金supported by the National Natural Science Foundation of China(21203027)Fuzhou University(2012-XQ-11)
文摘The adsorptions of a series of alkali metal (AM) atoms, Li, Na, K, Rb and Cs, on a Si(001)-2 × 2 surface at 0.25 monolayer coverage have been investigated systematically by means of density functional theory calculations. The effects of the size of AM atoms on the Si(001) surface are focused in the present work by examining the most stable adsorption site, diffusion path, band structure, charge transfer, and the change of work function for different adsorbates. Our results suggest that, when the interactions among AM atoms are neglectable, these AM atoms can be divided into three classes. For Li and Na atoms, they show unique site preferences, and correspond to the strongest and weakest AM-Si interactions, respectively. In particular, the band structure calculation indicates that the nature of Li-Si interaction differs significantly from others. For the adsorptions of other AM atoms with larger size (namely, K, Rb and Cs), the similarities in the atomic and electronic structures are observed, implying that the atom size has little influence on the adsorption behavior for these large AM atoms on the Si(001) surface.
基金The work was supported by the National Natural Science Foundation of China(No.21673047 and No.22073019)the Shanghai Key Laboratory Foundation of Molecular Catalysis and Innovative Materialsthe Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘One of the themes of modern molecular reac tion dynamics is to charac terize elementary chemical reactions from“quan tum state to quan tum stat e”,and the study of molecular reaction dynamics in excited states can help test the validi ty of modern chemical t heories and provide met hods to cont rol chemical reactions.The subject of this review is to describe the recent experimental techniques used to study the reaction dynamics of metal atoms in the gas phase.Through these techniques,information such as the internal energy distribution and angular distribution of the nascent products or the three-dimensional stereodynamic reactivity can be obtained.In addition,by preparing metal at oms wi th specific exci ted elec tronic states or orbi tal arrangemen ts,information about the reactivity of the electronic states enriches the relevant understanding of the electron transfer mechanism in metal reaction dynamics.
基金This research has been supported by the Foundation of State Key Laboratory of Structural Chemistry the National Natural+3 种基金Science Foundation of China (29973006) and Administration of Science and Technology of Fujian province (2001J018)
文摘The adsorption of metal atoms, Ni, Pd, Pt, Cu, Ag and Au, at low-coordinated edge and corner oxygen sites of MgO (001) surface has been studied theoretically by using density functional method with cluster models embedded in a large array of point charges. For comparison, the interaction of metal atoms with perfect regular oxygen site of MgO (001) surface was also calculated. As regards these metal atoms adsorbed at perfect oxygen sites of MgO (001) surface, Cu, Ag and Au are very weakly bonded to the surface of MgO; Ni, Pd and Pt, on the other hand, exhibit strong interactions with perfect oxygen sites of MgO (001) surface; the large adsorption energy shows that there exist strong bonds formed between these metal atoms with surface oxygen sites. For the metal atoms adsorbed at edge and corner sites, the adsorption energy is much increased, consistent with our previous study of CO and Cl2 adsorption on MgO (001) surface. This illustrates that the low-coordinated sites, especially corner site, are more advantageous positions for those metal atoms adsorbed on MgO (001) surface. The Mulliken population analysis indicates that the electron transferred from MgO to the metal atoms were increased with the decrease of the coordination numbers, which may be one of the reasons for changing catalytic efficiency and selectivity of the metal particles supported by MgO.
文摘Two kinds of small iron clusters supported on SiO2-200 (dehydroxylated at 200℃ and SiO2-600 (de-hydroxylated at 600℃) were prepared by Solvated Metal Atom Impregnation (SMAI) techniques. The iron atom precursor complex, bis (toluene) iron(0) formed in the metal atom reactor, was impregnated into SiO2 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by THM, Mosbauer and chemisorption measurements, and the resules show that higher concentration of surface hydroxyl groups of SiO2-200 favours the formation of more positively charged support iron cluster Fen/SiO2-200 and the lower concentration of surface hydroxyl groups of SiO2-600 favours the formation of basically neutral supported iron cluster Fe2/SiO2-600. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the precursor complex,bis(toluene) fron(0), to decompose more rapidly, and favours the formation of relatively large iron cluster. As a consequence, these two kinds of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fe/SiO2-200 in F-T reaction is similar to that of the unreduced a-Fe2O2, while Fe2/SiO2 -600 is similar to that of reduced α-Fe2O2.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304063 and 11174066)the Youth Foundation of Liaoning Normal University,China(Grant No.LS2014L002)
文摘An approximation formula is developed to determine the tune-out wavelengths for the ground states of the alkalinemetal atoms lithium,sodium and cesium from the existing relativistic reduced matrix elements and experimental energies.The first longest tune-out wavelengths for Li,Na,and Cs are 670.971 nm,589.557 nm,and 880.237 nm,respectively.This is in good agreement with the previous high precise results of 670.971626 nm,589.5565 nm,and 880.25 nm from the relativistic all-order many-body perturbation theory(RMBPT) calculation[Phys.Rev.A 84 043401(2011)].
基金Project supported by the National Natural Science Foundation of China(Grant No.11174212)
文摘By using first-principles calculations within the framework of density functional theory,the electronic and magnetic properties of 3d transitional metal(TM) atoms(from Sc to Zn) adsorbed monolayer Ga As nanosheets(Ga As NSs) are systematically investigated.Upon TM atom adsorption,Ga As NS,which is a nonmagnetic semiconductor,can be tuned into a magnetic semiconductor(Sc,V,and Fe adsorption),a half-metal(Mn adsorption),or a metal(Co and Cu adsorption).Our calculations show that the strong p–d hybridization between the 3d orbit of TM atoms and the 4p orbit of neighboring As atoms is responsible for the formation of chemical bonds and the origin of magnetism in the Ga As NSs with Sc,V,and Fe adsorption.However,the Mn 3d orbit with more unpaired electrons hybridizes not only with the As 4p orbit but also with the Ga 4p orbit,resulting in a stronger exchange interaction.Our results may be useful for electronic and magnetic applications of Ga As NS-based materials.
文摘The collision of alkali-metal atoms at ultralow temperatures have been studied, The Scattering lengths and the effective range are calculated for 7Li, 23Na, 39K, 87Rb, and 133Cs.
基金We are indebted to Prof. Kopin Liu (IAMS, Taipei) for stimulating discussions on going experiments, to Prof. Ming-fei Zhou and Assoc. Prof. Guan-jun Wang (Fudan University, Shanghai) for assistance in building machine, to Prof. Uzi. Even (Tel Aviv University, Tel Aviv) for discussions oil E1 valve employnmnt in laser ablation, and to Prof. Xue-ming Yang's group (DICP, Dalian) for new Iaser system. This work was supported by the National Natural Science Foundation of China (No.21322309) and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.
文摘We report a newly constructed laser ablation crossed molecular beam apparatus, equipped with time-sliced velocity map imaging technique, to study state-to-state metal atom reaction dynamics. Supersonic metal atomic beam is generated by laser vaporization of metal rod, and free expansion design without gas flow channel has been employed to obtain a good quality of metal atomic beam. We have chosen the crossed-beam reaction Al+O2 to test the performance of the new apparatus. Two-rotational-states selected AIO(X^2∑+, v=0, N and N+I4) products can be imaged via P(N) and R(N+14) branches of the Av=l band at the same wavelength, during (1+1) resonance-enhanced multi-photon ionization through the AIO(D2E+) intermediate state. In our experiment at 244.145 nm for simultaneous transitions of P(15) and R(29) branch, two rings in slice image were clearly distinguishable, corresponding to the AiO(v=0, N=IS) and AIO(v=0, N=29) states respectively. The energy difference between the two rotational levels is 403 cm^-1. The success of two states resolved in our apparatus suggests a better collisional energy resolution compared with the recent research study [J. Chem. Phys. 140, 214304 (2014)].
基金This work is financially supported partly by Ministry of Science and Technology (MOST) (Nos. 2017YFA0303500 and 2014CB848900), the National Natural Science Foundation of China (NSFC) (Nos. U1532112, 11574280 and 11605201 ), CAS Interdisciplinary Innovation Team and CAS Key Research Program of Frontier Sciences (No. QYZDB-SSW-SLH018). L. S. acknowledges the recruitment program of global experts, the CAS Hundred Talent Program and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University. We thank the Shanghai Synchrotron Radiation Facility (14W1, SSRF), the Beijing Synchrotron Radiation Facility (1W1B and soft-X-ray endstation, BSRF), the Hefei Synchrotron Radiation Facility (Photoemission, MCD and Catalysis/ Surface Science Endstations, NSRL), and the USTC Center for Micro and Nanoscale Research and Fabrication for helps in characterizations.
文摘Atomically dispersed catalysts have attracted attention in energy conversion applications because their efficiency and chemoselectivity for special catalysis are superior to those of traditional catalysts. However, they have limitations owing to the extremely low metal-loading content on supports, difficulty in the precise control of the metal location and amount as well as low stability at high temperatures. We prepared a highly doped single metal atom hybrid via a single-step thermal pyrolysis of glucose, dicyandiamide, and inorganic metal salts. High-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure spectroscopy (XAFS) revealed that nitrogen atoms doped into the graphene matrix were pivotal for metal atom stabilization by generating a metal-Nx coordination structure. Due to the strong anchoring effect of the graphene matrix, the metal loading content was over 4 wt.% in the isolated atomic hybrid (the Pt content was as high as 9.26 wt.% in the Pt-doped hybrid). Furthermore, the single iron-doped hybrid (Fe@N-doped graphene) showed a remarkable electrocatalytic performance for the oxygen reduction reaction. The peak power density was - 199 mW·cm-2 at a current density of 310 mA·cm-2 and superior to that of a commercial Pt/C catalyst when it was used as a cathode catalyst in assembled zinc-air batteries. This work offered a feasible approach to design and fabricate highly doped single metal atoms (SMAs) catalysts for potential energy applications.
基金supported by the National Natural Science Foundation of China(22104114)the Natural Science Foundation of Hubei Province(2021CFB518)+1 种基金the Fundamental Research Funds for the Central Universities(CCNU22JC006)the Program of Introducing Talents of Discipline to Universities of China(111 Program,B17019)。
文摘Carrier migration path and driving forces are two crucial factors for charge separation of heterojunction with efficient photoelectric response from the thermodynamic and kinetic perspectives,respectively.Constructing the S-scheme heterojunction and achieving an efficient migration path for space charge separation have aroused great interest,while a thorough insight into tuning interfacial band bending for S-scheme heterojunction is absent.Herein,we report a class of Zn atom-doped CeO_(2)/g-C_(3)N_(4) heterostructure for achieving a new carrier migration path conversion from inferior type-II to advanced S-scheme.Zn-dependent volcano-type plot for Zn-CeO_(2) is established to tune the Fermi level of CeO_(2).The built-in electric field for carrier flow dynamics strengthens when coupling with g-C_(3)N_(4),which significantly boosts the photoelectric response.Based on the intrinsic enzymelike activity of Zn-CeO_(2),we further demonstrate that the Zn-CeO_(2)/g-C_(3)N_(4) S-scheme heterojunction can be explored for constructing a sensitive nanozymatic photoelectrochemical biosensor for the detection of acetylcholinesterase.
基金supported by the Joint Funds of the National Natural Science Foundation of China(U20A20280)the Postgraduate Scientific Research Innovation Project of Hunan Province(CX20210171)。
文摘Developing high performance and low-cost catalysts for oxygen reduction reaction(ORR)in challenging acid condition is vital for proton-exchange-membrane fuel cells(PEMFCs).Carbon-supported nonprecious metal single atom catalysts(SACs)have been identified as potential catalysts in the field.Great advance has been obtained in constructing diverse active sites of SACs for improving the performance and understanding the fundamental principles of regulating acid ORR performance.However,the ORR performance of SACs is still unsatisfactory.Importantly,microenvironment adjustment of SACs offers chance to promote the performance of acid ORR.In this review,acid ORR mechanism,attenuation mechanism and performance improvement strategies of SACs are presented.The strategies for promoting ORR activity of SACs include the adjustment of center metal and its microenvironment.The relationship of ORR performance and structure is discussed with the help of advanced experimental investigations and theoretical calculations,which will offer helpful direction for designing advanced SACs for ORR.
基金financial supports from the NNSF of China(Grant No.51972077)the Fundamental Research Funds for the Central Universities(Grant No.3072020CF2518,3072020CFT2505+1 种基金3072021CFT2506,3072021CF2523 and 3072021CF2524)Heilongjiang Touyan Innovation Team Program.
文摘Atomically dispersed metals on N-doped carbon supports(M-N_(xCs)) have great potential applications in various fields.However,a precise understanding of the definitive relationship between the configuration of metal single atoms and the dielectric loss properties of M-N_(xCs) at the atomic-level is still lacking.Herein,we report a general approach to synthesize a series of three-dimensional(3D)honeycomb-like M-N_xC(M=Mn,Fe,Co,Cu,or Ni) containing metal single atoms.Experimental results indicate that 3D M-N_(xCs) exhibit a greatly enhanced dielectric loss compared with that of the NC matrix.Theoretical calculations demonstrate that the density of states of the d orbitals near the Fermi level is significantly increased and additional electrical dipoles are induced due to the destruction of the symmetry of the local microstructure,which enhances conductive loss and dipolar polarization loss of 3D M-N_(xCs),respectively.Consequently,these 3D M-N_(xCs) exhibit excellent electromagnetic wave absorption properties,outperforming the most commonly reported absorbers.This study systematically explains the mechanism of dielectric loss at the atomic level for the first time and is of significance to the rational design of high-efficiency electromagnetic wave absorbing materials containing metal single atoms.