Stretchable organic light-emitting diodes(OLEDs)are important components for flexible/wearable electronics.However,the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid coun...Stretchable organic light-emitting diodes(OLEDs)are important components for flexible/wearable electronics.However,the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid counterparts,one of the main reasons being the lack of ideal flexible transparent electrodes.Herein,we propose and develop a printed embedded metal composite electrode(PEMCE)strategy that enables the fabrication of ultra-thin,highly flexible transparent electrodes with robust mechanical properties.With the flexible transparent electrodes serves as the anodes,flexible/stretchable white OLEDs have been successfully constructed,achieving a current efficiency of up to 77.4 cd A^(-1)and a maximum luminance of 34787 cd m^(-2).The current efficiency of the resulting stretchable OLEDs is the highest ever reported for flexible/stretchable white OLEDs,which is about 1.2 times higher than that of the reference rigid devices based on ITO/glass electrodes.The excellent optoelectronic properties of the printed embedded transparent electrodes and the light extraction effect of the Ag-mesh account for the significant increase in current efficiency.Remarkably,the electroluminescence performance still retains~83%of the original luminance even after bending the device 2000 cycles at a radii of~0.5 mm.More importantly,the device can withstand tensile strains of up to~100%,and even mechanical deformation of 90%tensile strain does not result in a significant loss of electroluminescence performance with current efficiency and luminance maintained at over 85%.The results confirm that the PEMCE strategy is effective for constructing ultra-flexible transparent electrodes,showing great promise for use in a variety of flexible/stretchable electronics.展开更多
Lithium(Li)metal is the most promising electrode for next-gene ration rechargeable batteries.In order to push the commercialization of the lithium metal batteries,a kind of nitrogen(N)-doped composite graphene(NCG)ado...Lithium(Li)metal is the most promising electrode for next-gene ration rechargeable batteries.In order to push the commercialization of the lithium metal batteries,a kind of nitrogen(N)-doped composite graphene(NCG)adopted as the Li plating host was prepared to regulate Li metal nucleation and suppress dendrite growth.Furthermore,a new kind of sandwich-type composite lithium metal(STCL)electrode was developed to improve its application.The STCL electrode can be used as convenient as a piece of Li foil but no dendrite growth.In a symmetric battery,the STCL electrode cycled for more than 4500 h with the overpotential of less than 40 mV.And due to the creative design,the STCL promises the Li-S battery with a prolonged cycling lifespan.展开更多
Printed and flexible electronics are definitely promising cutting-edge electronic technologies of the future. They offer a wide-variety of applications such as flexible circuits, flexible displays, flexible solar cell...Printed and flexible electronics are definitely promising cutting-edge electronic technologies of the future. They offer a wide-variety of applications such as flexible circuits, flexible displays, flexible solar cells, skinlike pressure sensors, and radio frequency identification tags in our daily life. As the most-fundamental component of electronics, electrodes are made of conductive materials that play a key role in flexible and printed electronic devices. In this review, various inorganic conductive materials and strategies for obtaining highly conductive and uniform electrodes are demonstrated. Applications of printed electrodes fabricated via these strategies are also described. Nevertheless, there are a number of challenges yet to overcome to optimize the processing and performance of printed electrodes.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:21835003,21422402,21674050,62005126National Key Basic Research Program of China,Grant/Award Numbers:2014CB648300,2017YFB0404501+7 种基金Natural Science Foundation of Jiangsu Province,Grant/Award Numbers:BE2019120,BK20140060Program for Jiangsu Specially-Appointed Professor,Grant/Award Number:RK030STP15001Six Talent Peaks Project of Jiangsu Province,Grant/Award Number:TD-XCL-009333 Project of Jiangsu Province,Grant/Award Number:BRA2017402Leading Talent of Technological Innovation of National Ten-Thousands Talents Program of ChinaExcellent Scientific and Technological Innovative Teams of Jiangsu Higher Education Institutions,Grant/Award Number:TJ217038NUPT Scientific Foundation,Grant/Award Number:NY220152Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Stretchable organic light-emitting diodes(OLEDs)are important components for flexible/wearable electronics.However,the efficiency of the existing stretchable OLEDs is still much lower as compared with their rigid counterparts,one of the main reasons being the lack of ideal flexible transparent electrodes.Herein,we propose and develop a printed embedded metal composite electrode(PEMCE)strategy that enables the fabrication of ultra-thin,highly flexible transparent electrodes with robust mechanical properties.With the flexible transparent electrodes serves as the anodes,flexible/stretchable white OLEDs have been successfully constructed,achieving a current efficiency of up to 77.4 cd A^(-1)and a maximum luminance of 34787 cd m^(-2).The current efficiency of the resulting stretchable OLEDs is the highest ever reported for flexible/stretchable white OLEDs,which is about 1.2 times higher than that of the reference rigid devices based on ITO/glass electrodes.The excellent optoelectronic properties of the printed embedded transparent electrodes and the light extraction effect of the Ag-mesh account for the significant increase in current efficiency.Remarkably,the electroluminescence performance still retains~83%of the original luminance even after bending the device 2000 cycles at a radii of~0.5 mm.More importantly,the device can withstand tensile strains of up to~100%,and even mechanical deformation of 90%tensile strain does not result in a significant loss of electroluminescence performance with current efficiency and luminance maintained at over 85%.The results confirm that the PEMCE strategy is effective for constructing ultra-flexible transparent electrodes,showing great promise for use in a variety of flexible/stretchable electronics.
基金financially supported by the Beijing Municipal Science and Technology Project(Nos.Z171100000917021 and Z181100004518003)。
文摘Lithium(Li)metal is the most promising electrode for next-gene ration rechargeable batteries.In order to push the commercialization of the lithium metal batteries,a kind of nitrogen(N)-doped composite graphene(NCG)adopted as the Li plating host was prepared to regulate Li metal nucleation and suppress dendrite growth.Furthermore,a new kind of sandwich-type composite lithium metal(STCL)electrode was developed to improve its application.The STCL electrode can be used as convenient as a piece of Li foil but no dendrite growth.In a symmetric battery,the STCL electrode cycled for more than 4500 h with the overpotential of less than 40 mV.And due to the creative design,the STCL promises the Li-S battery with a prolonged cycling lifespan.
基金supported by the National Natural Science Foundation of China(Nos.51475093,U1632115)the Science and Technology Commission of Shanghai Municipality(No.14JC1400200)+1 种基金the National Key Technologies R&D Program of China(No.2015ZX02102-003)the Changjiang Young Scholars Programme of China
文摘Printed and flexible electronics are definitely promising cutting-edge electronic technologies of the future. They offer a wide-variety of applications such as flexible circuits, flexible displays, flexible solar cells, skinlike pressure sensors, and radio frequency identification tags in our daily life. As the most-fundamental component of electronics, electrodes are made of conductive materials that play a key role in flexible and printed electronic devices. In this review, various inorganic conductive materials and strategies for obtaining highly conductive and uniform electrodes are demonstrated. Applications of printed electrodes fabricated via these strategies are also described. Nevertheless, there are a number of challenges yet to overcome to optimize the processing and performance of printed electrodes.