In order to avoid forming an electrical conductive network due to surface connections, the magnetic metal fibers were coated with SiO2, for surface modification by the sol-gel process. The microstructure, composition ...In order to avoid forming an electrical conductive network due to surface connections, the magnetic metal fibers were coated with SiO2, for surface modification by the sol-gel process. The microstructure, composition and electromagnetic characteristics of SiO2-coated and uncoated metal fibers were studied using SEM, EDAX, and a voter network analyzer. The reflectivity was simulated using the RAMCAD software. The electromagnetic parameters and absorption properties of SiO2-coated metal fibers were improved greatly due to optimal impendence matching and the electric conductivity decreased, compared to those of uncoated materials.展开更多
The organic gel-thermal reduction process was successfully used for the preparation of magnetic metal Ni, Fe, Fe-Ni fine fibers from raw materials of citric acid or lactic acid and metal salts. Ni, Fe and Fe-Ni fine f...The organic gel-thermal reduction process was successfully used for the preparation of magnetic metal Ni, Fe, Fe-Ni fine fibers from raw materials of citric acid or lactic acid and metal salts. Ni, Fe and Fe-Ni fine fibers synthesized were featured with diameters of around 1 μm and lengths of as long as 2 m for Ni fibers, 0.5 m for iron fibers, 1 m for Fe-Ni fibers. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of these gel precursors were characterized by FTIR, XRD,TG/DSC and SEM, respectively. The gel spinnability largely depends on molecular structures of metal-carboxylate complexes formed in the gel. It is reasoned that these gels consist of linear-type structural molecules [(C6H6O7)Ni]n or [(C6H5O7)2Ni3] for the nickel citrate gel, [(C3H5O3)3Fe] for the ferric lactate gel, [(C6H5O7)5(NiFe)3] for the iron-nickel citrate gel respectively and the gels obtain showed a good spinning performance.展开更多
The organic gel-thermal reduction process was used for the preparation of ferromagnetic metal Ni, Co and Fe fine fibers from the raw materials of citric acid, lactic acid and metal salts. The structure, thermal decomp...The organic gel-thermal reduction process was used for the preparation of ferromagnetic metal Ni, Co and Fe fine fibers from the raw materials of citric acid, lactic acid and metal salts. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of these gel precursors were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermo-gravimetric/differential scanning calorimetry and scanning electron microscopy. The results show that spinnability of gel largely depends on molecular structure of metal-carboxylate complex that is a linear-type structure formed in the gel. As a result, the gels exhibit a good spinnability. Metal Ni, Co and Fe fine fibers are featured with diameters of around 1 μm and a high aspect ratio up to 1×106.展开更多
The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equatio...The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equation, and the model is numerically solved by the level set method. The three-dimensional numerical simulations of two metal powders and fibers(the fiber angle is 0° or 90°) are implemented by this mathematical model, respectively. The numerical simulation results accord with the experimental ones. The sintering neck growth trends of metal powders and metal fibers are similar. The sintering neck radius of metal fibers is larger than that of metal powders. The difference of the neck radius is caused by the difference of geometric structure which makes an important influence on the curvature affecting the migration rate of atoms.展开更多
A novel method based on plastic processing and equipment for preparing ultra-fine metal fibers and particles is reported.With this new method,metal fibers and particles can both be produced on the same equipment and t...A novel method based on plastic processing and equipment for preparing ultra-fine metal fibers and particles is reported.With this new method,metal fibers and particles can both be produced on the same equipment and the surfaces of the fibers and particles can be protected from oxidation by the polymers or solvents during the preparation process.Metal-alloy powders with lower melt point were filled into polymer by an extruder,followed by a die-drawing process at a temperature lower than the melt temperature of the metal alloy.Metal fibers or particles were obtained after the polymer matrix was washed away.Metal alloy fibers can be obtained when a polymer that strongly interacts with metal alloy,such as a special polyvinyl alcohol with a low alcoholysis degree,is used as the polymer matrix.Metal-alloy particles can be obtained when a polymer with weak interaction with metal alloy,such as polyethylene(PE),is used as the polymer matrix.Based on the principle of this new method,it is possible to produce finer or even nano-sized metal fibers and particles with higher melting points.展开更多
The formation of sintering necks between two metal fibers was investigated using the oval-oval model with respect to the fiber angle range of 0°-90°. Surface diffusion was assumed to be the predominant mecha...The formation of sintering necks between two metal fibers was investigated using the oval-oval model with respect to the fiber angle range of 0°-90°. Surface diffusion was assumed to be the predominant mechanism in every section of the junction of two metal fibers in this model, which was addressed numerically using the level- set method. The growth rates of the sintering necks in the direction of the bisector of obtuse angle, the bisector of acute angle and the fiber axis were discussed in detail. It is found that the growth rate of the sintering necks decreases with fiber angle increasing in the direction of the fiber axis and the bisector of acute angle. However, an opposite variation in growth rate of sintering necks can be found in the direction of the bisector of obtuse angle. The numerical simulation results show that the growth rate of the sintering necks is significantly affected by the initial local geomet- rical structure which is determined by the fiber angle.展开更多
Fiber-shaped batteries that feature outstanding flexibility,light weight,and wovenability are extremely attractive for powering smart wearable electronic textiles,which further stimulates their demand in extreme envir...Fiber-shaped batteries that feature outstanding flexibility,light weight,and wovenability are extremely attractive for powering smart wearable electronic textiles,which further stimulates their demand in extreme environments.However,there are rare reports on ultralow-temperature fiber batteries to date.This is mainly attributed to the poor conductivity of electrodes and freezing of electrolytes that restrain their satisfactory flexible operation in cold environments.Herein,we propose a fiber cooper metal battery consisting of a conductive polyaniline cathode,an anti-freezing Cu(BF4)2+H3PO4electrolyte and an acidresistant copper wire anode,which can withstand various deformations at ultralow temperatures.Impressively,enhanced capacity and cyclic stability can be achieved by cryoactivated abundant reactive sites in the polyaniline,while benefiting from redox reactions with rapid kinetics involving protons rather than copper ions.Consequently,this well-designed polyaniline/Cu fiber battery delivers excellent flexibility without obvious capacity decay after being bent at-30℃,as well as a remarkable discharge capacity of 120.1 mA h g-1and a capacity retention of 96.8%after 2000 cycles at-50℃.The fiber batteries integrated into wearable textiles can power various electronic devices.These performances greatly outperform those of most reported works.Overall,this work provides a promising strategy toward applications of cryogenic wearable energy storage devices.展开更多
Fabrication, characterization and performance of a porous metal-fiber sintered felt (PMFSF) based on multi-tooth cutting and solid-phase sintering were studied. The PMFSF was used as the anodic methanol barrier in a...Fabrication, characterization and performance of a porous metal-fiber sintered felt (PMFSF) based on multi-tooth cutting and solid-phase sintering were studied. The PMFSF was used as the anodic methanol barrier in a passive air-breathing direct methanol fuel cell to mitigate the effects of methanol crossover. Compared with the commercial SUS316L felt made of bundle-drawn fibers, this self-made PMFSF has larger pore diameter, polarized pore distribution, irregular fiber shape, rougher surface, lower mass flow resistance and evident hydrophobicity. The results reveal that the use of a PMFSF significantly enhances the cell performance since it helps to maintain a balance between the reactant and product management while depressing methanol crossover. The PMFSF with a porosity of 70% yields the highest cell performance at a methanol concentration of 4 mol/L.展开更多
Abstract: To enable the use of metallic components in direct methanol fuel cells (DMFCs), issues related to corrosion resistance must be considered because of an acid environment induced by the solid electrolyte. I...Abstract: To enable the use of metallic components in direct methanol fuel cells (DMFCs), issues related to corrosion resistance must be considered because of an acid environment induced by the solid electrolyte. In this study, we report the electrochemical behaviors of metal-fiber-based porous sintered components in a simulated corrosive environment of DMFCs. Three materials were evaluated: pure copper, AISI304, and AISI316L. The environmental factors and related mechanisms affecting the corrosion behaviors were analyzed. The results demonstrated that AISI316L exhibits the best performance. A higher SO4^2- concentration increases the risk of material corrosion, whereas an increase in methanol concentration inhibits corrosion. The morphological features of the corroded samples were also characterized in this study.展开更多
A novel porous metal fiber sintered sheet (PMFSS) with a three-dimensional reticulated structure was fabricated by multi-tooth cutting and high-temperature solid-phase sintering process with copper fibers. A uniaxia...A novel porous metal fiber sintered sheet (PMFSS) with a three-dimensional reticulated structure was fabricated by multi-tooth cutting and high-temperature solid-phase sintering process with copper fibers. A uniaxial tensile test was conducted to investigate the effect of fiber length and natural aging factor on the tensile properties of the PMFSS. Results indicated that, under given stress, the increase of fiber length helped reinforce the tensile strength. The elongation of the PMFSS with medium length fiber of 15 mm exhibited the optimal performance, reaching about 13.5%. After natural aging treatment for a month, the tensile strength of PMFSS significantly decreased, but the change of elongation was negligible except for the one with the shortest fiber length of 5 mm, whose elongation was effectively improved. The morphological fracture features of PMFSSs were also characterized.展开更多
The quasi-metallic fibers were selected from 1 to 40 pieces and connected in parallel in this study.The giant magneto impedance(GMI)effect of Co-based melt extract fibers in the bundle mode was investigated,and the di...The quasi-metallic fibers were selected from 1 to 40 pieces and connected in parallel in this study.The giant magneto impedance(GMI)effect of Co-based melt extract fibers in the bundle mode was investigated,and the distribution of the surface circumferential magnetic field on the fibers was also analyzed.Such distribution was induced by the driving current,which gave rise to the circular magnetization process and the GMI effect.The improved GMI effect with much higher field sensitivity was observed in these fiber bundles.Results show that the field sensitivities of the four-fiber and six-fiber bundles reach 19.5 V·m·kA−1(at 1 MHz)and 30.8 V·m·kA−1(at 5 MHz).The circumferential magnetic field distributed throughout the fiber’s circumferential surface is rearranged and becomes uneven due to the magnetic interaction among fibers.There are both strengthened and weakened magnetic field parts around these fibers’surfaces.The strengthened magnetic field improves the circumferential domain magnetization of the surface,resulting in larger GMI effects.However,the weakened parts inhibit the circumferential magnetization process and,therefore,the GMI effect.This also induces greater magnetization damp because of the increased domain interactions under the strong skin effect.The co-effect between the magnetic domains and the circumferential magnetization induces the optimization of the GMI effect in the four-fiber bundles.The observed GMI effect proves that fibers in bundle form can modify the sensitivity of the GMI effect.Moreover,different fiber bundles could be tuned according to the working conditions in order to manipulate the GMI response.展开更多
The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and ...The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions展开更多
Inspired by the curved branches of fractal trees, hooked Ni–Fe fibers were grown in situ in Ni–Fe composite coatings on a spheroidal graphite cast iron substrate. These hooked Ni–Fe fibers exhibited inclination ang...Inspired by the curved branches of fractal trees, hooked Ni–Fe fibers were grown in situ in Ni–Fe composite coatings on a spheroidal graphite cast iron substrate. These hooked Ni–Fe fibers exhibited inclination angles of about 39°, which was in accordance with the theoretical prediction of 37°. Ni–Fe nanostructures self-assembled to form dendrites and evolved into hooked fibers by an oriented attachment reaction. The orientation rotation of Ni–Fe nanostructures played an important role in the growth of curved hooked Ni–Fe fibers. During sliding wear tests, the volume loss of the spheroidal graphite cast iron substrate was 2.2 times as large as that of the Ni–Fe coating reinforced by hooked fibers. The good load-transferring ability of hooked Ni–Fe fibers led to an improvement in their wear properties during wear tests.展开更多
Through theoretical analysis and finite element simulation,the low-velocity impact of rectangular foam-filled fiber metal laminate(FML)tubes is studied in this paper.According to the rigid-plastic material approximati...Through theoretical analysis and finite element simulation,the low-velocity impact of rectangular foam-filled fiber metal laminate(FML)tubes is studied in this paper.According to the rigid-plastic material approximation with modifications,simple analytical solutions are obtained for the dynamic response of rectangular foam-filled FML tubes.The numerical calculations for low-velocity impact of rectangular foam-filled FML tubes are conducted.The accuracy of analytical solutions and numerical results is verified by each other.Finally,the effects of the metal volume fraction of FMLs,the number of the metal layers in FMLs,and the foam strength on the dynamic response of foam-filled tubes are discussed through the analytical model in details.It is shown that the force increases with the increase in the metal volume fraction in FMLs,the number of the metal layers in FML,and the foam strength for the given deflection.展开更多
To obtain the influence rules of the coating parameters of a long-period fiber grating(LPFG)with respect to temperature,strain and refractive index sensing properties,based on the mode coupling theory,a strict four-la...To obtain the influence rules of the coating parameters of a long-period fiber grating(LPFG)with respect to temperature,strain and refractive index sensing properties,based on the mode coupling theory,a strict four-layer theorietical model of a metal film coated LPFG is established,and these parameters that affect the spectral characteristics of the metal film coated LPFG are studied.The simulation results show that there is an optimal metal film thickness on the surface of the LPFG that will induce the surface-plasmon resonance(SP R)effect,which results in higher sensitivity to the environmental temperature and refractive index but has little influence on the strain There is theoretical evidence that when the silver thickness is between0.8and1.2nm,the refractive index sensitivity will reach the peak point of42.4026,at which the refractive index sensor sensitivity is increased by4.S%.The theoretical results of coating a long-period fiber grating provide a good theoretical basis and guidance for LPFG design and parameters optimization展开更多
A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experime...A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experimental data in a SiCw/Al-Li T6 composite and the published experimental data on different SiCw/Al T6 composites and also compared with the previous shear lag models and the other theoretical models.展开更多
As a key part of the pyrotechnic gas generator,the filter not only removes the particulate matter but also cools the hot gas to a safe level.This paper aims to improve the understanding of the basic heat and flow phen...As a key part of the pyrotechnic gas generator,the filter not only removes the particulate matter but also cools the hot gas to a safe level.This paper aims to improve the understanding of the basic heat and flow phenomenon in the gas generator.The pyrotechnic gas generator is modelling by a simplified filter structure with fiber arrays.A finite-volume model of the heat and fluid flow is proposed to simulate the detailed multi-dimensional flow and energy conversion behaviors.Several verification results are in good agreement with data in different references.Simulation results demonstrate that the filter can not only absorb heat from the gas but also cause the high intensity enhancement of the heat transfer.The performance difference between inline and staggered arrays is also discussed.The findings of the study put a further prediction tool for the understanding and design of the filter system with fibers.展开更多
A review on the formation and unique physical and mechanical properties of metallic glassy fibers(MGFs)with the diameter ranging from micro to nano scales fabricated by a supercooled liquid extraction method(SLEM)is g...A review on the formation and unique physical and mechanical properties of metallic glassy fibers(MGFs)with the diameter ranging from micro to nano scales fabricated by a supercooled liquid extraction method(SLEM)is given.The SLEM method,through driving metallic glass rods in their supercooled liquid region via superplasticity,can fabricate MGFs with precisely designed and controlled size and properties,high structural uniformity and surface smoothness and extreme flexibility.The SLEM method is efficient and the MGFs can be continuously prepared by this method.A parameter f based on the thermal and rheological properties of MG-forming alloys is proposed to control the preparation and size of the fibers.We show that the novel MGFs with superior properties may attract intensive scientific interests and propel more engineering and functional applications.展开更多
Carbon fiber reinforced thermoplastic composites(CFRTP)and metals hybrid structures have been widely used in aircraft lightweight manufacturing.However,due to the significant difference in physical and chemical proper...Carbon fiber reinforced thermoplastic composites(CFRTP)and metals hybrid structures have been widely used in aircraft lightweight manufacturing.However,due to the significant difference in physical and chemical properties between CFRTP and metals,there are lots of challenges to connect them with high quality.Laser welding has a good application prospect in CFRTP and metals connection,and a significant research progress has been made in the exploration of CFRTP-metal laser joining mechanism,joining process optimization,joining strength improvement and joining defects controlling.However,there are still some problems need to be solved for this technology application.In this paper,the research progress of CFRTP-metal laser joining was summarized in three major aspects:theoretical modeling and simulation analysis,process exploration and parameter optimization,joint performance improvement and process innovation.And,problems and challenges of this technology were discussed,and the outlook of this research was provided.展开更多
文摘In order to avoid forming an electrical conductive network due to surface connections, the magnetic metal fibers were coated with SiO2, for surface modification by the sol-gel process. The microstructure, composition and electromagnetic characteristics of SiO2-coated and uncoated metal fibers were studied using SEM, EDAX, and a voter network analyzer. The reflectivity was simulated using the RAMCAD software. The electromagnetic parameters and absorption properties of SiO2-coated metal fibers were improved greatly due to optimal impendence matching and the electric conductivity decreased, compared to those of uncoated materials.
基金the National Natural Science Foundation of China(No.50474038,50674048)
文摘The organic gel-thermal reduction process was successfully used for the preparation of magnetic metal Ni, Fe, Fe-Ni fine fibers from raw materials of citric acid or lactic acid and metal salts. Ni, Fe and Fe-Ni fine fibers synthesized were featured with diameters of around 1 μm and lengths of as long as 2 m for Ni fibers, 0.5 m for iron fibers, 1 m for Fe-Ni fibers. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of these gel precursors were characterized by FTIR, XRD,TG/DSC and SEM, respectively. The gel spinnability largely depends on molecular structures of metal-carboxylate complexes formed in the gel. It is reasoned that these gels consist of linear-type structural molecules [(C6H6O7)Ni]n or [(C6H5O7)2Ni3] for the nickel citrate gel, [(C3H5O3)3Fe] for the ferric lactate gel, [(C6H5O7)5(NiFe)3] for the iron-nickel citrate gel respectively and the gels obtain showed a good spinning performance.
基金Projects(50474038 50674048) supported by the National Natural Science Foundation of China
文摘The organic gel-thermal reduction process was used for the preparation of ferromagnetic metal Ni, Co and Fe fine fibers from the raw materials of citric acid, lactic acid and metal salts. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of these gel precursors were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermo-gravimetric/differential scanning calorimetry and scanning electron microscopy. The results show that spinnability of gel largely depends on molecular structure of metal-carboxylate complex that is a linear-type structure formed in the gel. As a result, the gels exhibit a good spinnability. Metal Ni, Co and Fe fine fibers are featured with diameters of around 1 μm and a high aspect ratio up to 1×106.
基金Projects(51174236,51134003)supported by the National Natural Science Foundation of ChinaProject(2011CB606306)supported by the National Basic Research Program of ChinaProject(PMM-SKL-4-2012)supported by the Opening Project of State Key Laboratory of Porous Metal Materials(Northwest Institute for Nonferrous Metal Research),China
文摘The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equation, and the model is numerically solved by the level set method. The three-dimensional numerical simulations of two metal powders and fibers(the fiber angle is 0° or 90°) are implemented by this mathematical model, respectively. The numerical simulation results accord with the experimental ones. The sintering neck growth trends of metal powders and metal fibers are similar. The sintering neck radius of metal fibers is larger than that of metal powders. The difference of the neck radius is caused by the difference of geometric structure which makes an important influence on the curvature affecting the migration rate of atoms.
文摘A novel method based on plastic processing and equipment for preparing ultra-fine metal fibers and particles is reported.With this new method,metal fibers and particles can both be produced on the same equipment and the surfaces of the fibers and particles can be protected from oxidation by the polymers or solvents during the preparation process.Metal-alloy powders with lower melt point were filled into polymer by an extruder,followed by a die-drawing process at a temperature lower than the melt temperature of the metal alloy.Metal fibers or particles were obtained after the polymer matrix was washed away.Metal alloy fibers can be obtained when a polymer that strongly interacts with metal alloy,such as a special polyvinyl alcohol with a low alcoholysis degree,is used as the polymer matrix.Metal-alloy particles can be obtained when a polymer with weak interaction with metal alloy,such as polyethylene(PE),is used as the polymer matrix.Based on the principle of this new method,it is possible to produce finer or even nano-sized metal fibers and particles with higher melting points.
基金financially supported by the National Natural Science Foundation of China (Nos. 51174236 and 51134003)the National Basic Research Program of China (No. 2011CB606306)the Opening Project of State Key Laboratory of Porous Metal Materials (No. PMM-SKL-4-2012)
文摘The formation of sintering necks between two metal fibers was investigated using the oval-oval model with respect to the fiber angle range of 0°-90°. Surface diffusion was assumed to be the predominant mechanism in every section of the junction of two metal fibers in this model, which was addressed numerically using the level- set method. The growth rates of the sintering necks in the direction of the bisector of obtuse angle, the bisector of acute angle and the fiber axis were discussed in detail. It is found that the growth rate of the sintering necks decreases with fiber angle increasing in the direction of the fiber axis and the bisector of acute angle. However, an opposite variation in growth rate of sintering necks can be found in the direction of the bisector of obtuse angle. The numerical simulation results show that the growth rate of the sintering necks is significantly affected by the initial local geomet- rical structure which is determined by the fiber angle.
基金the financial support from the National Natural Science Foundation of China(52273171 and 21875055)the Shenzhen Research Foundation Project(GXWD20201230155427003)。
文摘Fiber-shaped batteries that feature outstanding flexibility,light weight,and wovenability are extremely attractive for powering smart wearable electronic textiles,which further stimulates their demand in extreme environments.However,there are rare reports on ultralow-temperature fiber batteries to date.This is mainly attributed to the poor conductivity of electrodes and freezing of electrolytes that restrain their satisfactory flexible operation in cold environments.Herein,we propose a fiber cooper metal battery consisting of a conductive polyaniline cathode,an anti-freezing Cu(BF4)2+H3PO4electrolyte and an acidresistant copper wire anode,which can withstand various deformations at ultralow temperatures.Impressively,enhanced capacity and cyclic stability can be achieved by cryoactivated abundant reactive sites in the polyaniline,while benefiting from redox reactions with rapid kinetics involving protons rather than copper ions.Consequently,this well-designed polyaniline/Cu fiber battery delivers excellent flexibility without obvious capacity decay after being bent at-30℃,as well as a remarkable discharge capacity of 120.1 mA h g-1and a capacity retention of 96.8%after 2000 cycles at-50℃.The fiber batteries integrated into wearable textiles can power various electronic devices.These performances greatly outperform those of most reported works.Overall,this work provides a promising strategy toward applications of cryogenic wearable energy storage devices.
基金Projects(50930005,51075155)supported by the National Natural Science Foundation of ChinaProject(20100172110001)supported by PhD Programs Foundation of Ministry of Education of China
文摘Fabrication, characterization and performance of a porous metal-fiber sintered felt (PMFSF) based on multi-tooth cutting and solid-phase sintering were studied. The PMFSF was used as the anodic methanol barrier in a passive air-breathing direct methanol fuel cell to mitigate the effects of methanol crossover. Compared with the commercial SUS316L felt made of bundle-drawn fibers, this self-made PMFSF has larger pore diameter, polarized pore distribution, irregular fiber shape, rougher surface, lower mass flow resistance and evident hydrophobicity. The results reveal that the use of a PMFSF significantly enhances the cell performance since it helps to maintain a balance between the reactant and product management while depressing methanol crossover. The PMFSF with a porosity of 70% yields the highest cell performance at a methanol concentration of 4 mol/L.
基金financially supported by the Natural Science Foundation of Guangdong Province, China (No. S2013040016899)the Fundamental Research Funds for Central Universities of China (No. 2013ZM0003)+1 种基金the National Natural Science Foundation of China (No. 51275180)the Open Fund of Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures (No. 2013001)
文摘Abstract: To enable the use of metallic components in direct methanol fuel cells (DMFCs), issues related to corrosion resistance must be considered because of an acid environment induced by the solid electrolyte. In this study, we report the electrochemical behaviors of metal-fiber-based porous sintered components in a simulated corrosive environment of DMFCs. Three materials were evaluated: pure copper, AISI304, and AISI316L. The environmental factors and related mechanisms affecting the corrosion behaviors were analyzed. The results demonstrated that AISI316L exhibits the best performance. A higher SO4^2- concentration increases the risk of material corrosion, whereas an increase in methanol concentration inhibits corrosion. The morphological features of the corroded samples were also characterized in this study.
基金Projects(51475172,51275180,51375177) supported by the National Natural Science Foundation of ChinaProject(S2013040016899) supported by the Natural Science Foundation of Guangdong Province,ChinaProjects(2013ZM0003,2013ZZ017) supported by the Fundamental Research Funds for the Central Universities,South China University of Technology,China
文摘A novel porous metal fiber sintered sheet (PMFSS) with a three-dimensional reticulated structure was fabricated by multi-tooth cutting and high-temperature solid-phase sintering process with copper fibers. A uniaxial tensile test was conducted to investigate the effect of fiber length and natural aging factor on the tensile properties of the PMFSS. Results indicated that, under given stress, the increase of fiber length helped reinforce the tensile strength. The elongation of the PMFSS with medium length fiber of 15 mm exhibited the optimal performance, reaching about 13.5%. After natural aging treatment for a month, the tensile strength of PMFSS significantly decreased, but the change of elongation was negligible except for the one with the shortest fiber length of 5 mm, whose elongation was effectively improved. The morphological fracture features of PMFSSs were also characterized.
基金the National Natural Science Foundation of China(Nos.51861031 and 51604159)the Natural Science Foundation of Ningxia,China(No.2018AAC03056).
文摘The quasi-metallic fibers were selected from 1 to 40 pieces and connected in parallel in this study.The giant magneto impedance(GMI)effect of Co-based melt extract fibers in the bundle mode was investigated,and the distribution of the surface circumferential magnetic field on the fibers was also analyzed.Such distribution was induced by the driving current,which gave rise to the circular magnetization process and the GMI effect.The improved GMI effect with much higher field sensitivity was observed in these fiber bundles.Results show that the field sensitivities of the four-fiber and six-fiber bundles reach 19.5 V·m·kA−1(at 1 MHz)and 30.8 V·m·kA−1(at 5 MHz).The circumferential magnetic field distributed throughout the fiber’s circumferential surface is rearranged and becomes uneven due to the magnetic interaction among fibers.There are both strengthened and weakened magnetic field parts around these fibers’surfaces.The strengthened magnetic field improves the circumferential domain magnetization of the surface,resulting in larger GMI effects.However,the weakened parts inhibit the circumferential magnetization process and,therefore,the GMI effect.This also induces greater magnetization damp because of the increased domain interactions under the strong skin effect.The co-effect between the magnetic domains and the circumferential magnetization induces the optimization of the GMI effect in the four-fiber bundles.The observed GMI effect proves that fibers in bundle form can modify the sensitivity of the GMI effect.Moreover,different fiber bundles could be tuned according to the working conditions in order to manipulate the GMI response.
文摘The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions
基金financially supported by the Project of Education Department of Liaoning Province,China(No.990790)the National Natural Science Foundation of China(No.51402035)
文摘Inspired by the curved branches of fractal trees, hooked Ni–Fe fibers were grown in situ in Ni–Fe composite coatings on a spheroidal graphite cast iron substrate. These hooked Ni–Fe fibers exhibited inclination angles of about 39°, which was in accordance with the theoretical prediction of 37°. Ni–Fe nanostructures self-assembled to form dendrites and evolved into hooked fibers by an oriented attachment reaction. The orientation rotation of Ni–Fe nanostructures played an important role in the growth of curved hooked Ni–Fe fibers. During sliding wear tests, the volume loss of the spheroidal graphite cast iron substrate was 2.2 times as large as that of the Ni–Fe coating reinforced by hooked fibers. The good load-transferring ability of hooked Ni–Fe fibers led to an improvement in their wear properties during wear tests.
基金the National Natural Science Foundation of China(Nos.11872291 and11972281)the Jiangsu Key Laboratory of Engineering Mechanics,Southeast University+2 种基金the Fundamental Research Funds for the Central Universities(No.LEM21B01)the Key Laboratory of Impact and Safety Engineering(Ningbo University),Ministry of Education(No.cj202002)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JM-034)。
文摘Through theoretical analysis and finite element simulation,the low-velocity impact of rectangular foam-filled fiber metal laminate(FML)tubes is studied in this paper.According to the rigid-plastic material approximation with modifications,simple analytical solutions are obtained for the dynamic response of rectangular foam-filled FML tubes.The numerical calculations for low-velocity impact of rectangular foam-filled FML tubes are conducted.The accuracy of analytical solutions and numerical results is verified by each other.Finally,the effects of the metal volume fraction of FMLs,the number of the metal layers in FMLs,and the foam strength on the dynamic response of foam-filled tubes are discussed through the analytical model in details.It is shown that the force increases with the increase in the metal volume fraction in FMLs,the number of the metal layers in FML,and the foam strength for the given deflection.
基金National Natural Science Foundation of China(No.51309001)Scientific Research Key Project of Anhui Province(No.KJ2017A041)
文摘To obtain the influence rules of the coating parameters of a long-period fiber grating(LPFG)with respect to temperature,strain and refractive index sensing properties,based on the mode coupling theory,a strict four-layer theorietical model of a metal film coated LPFG is established,and these parameters that affect the spectral characteristics of the metal film coated LPFG are studied.The simulation results show that there is an optimal metal film thickness on the surface of the LPFG that will induce the surface-plasmon resonance(SP R)effect,which results in higher sensitivity to the environmental temperature and refractive index but has little influence on the strain There is theoretical evidence that when the silver thickness is between0.8and1.2nm,the refractive index sensitivity will reach the peak point of42.4026,at which the refractive index sensor sensitivity is increased by4.S%.The theoretical results of coating a long-period fiber grating provide a good theoretical basis and guidance for LPFG design and parameters optimization
文摘A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experimental data in a SiCw/Al-Li T6 composite and the published experimental data on different SiCw/Al T6 composites and also compared with the previous shear lag models and the other theoretical models.
基金This work is supported by the National Natural Science Foundation of China(Grant No.11972194)the Fundamental Research Funds for the Central Universities,No.30918011323China Postdoctoral Science Foundation funded project(Grant No.2015M581797).
文摘As a key part of the pyrotechnic gas generator,the filter not only removes the particulate matter but also cools the hot gas to a safe level.This paper aims to improve the understanding of the basic heat and flow phenomenon in the gas generator.The pyrotechnic gas generator is modelling by a simplified filter structure with fiber arrays.A finite-volume model of the heat and fluid flow is proposed to simulate the detailed multi-dimensional flow and energy conversion behaviors.Several verification results are in good agreement with data in different references.Simulation results demonstrate that the filter can not only absorb heat from the gas but also cause the high intensity enhancement of the heat transfer.The performance difference between inline and staggered arrays is also discussed.The findings of the study put a further prediction tool for the understanding and design of the filter system with fibers.
基金supported by the National Natural Science Foundation of China(Grant Nos.51271195 and 51171204)the National Basic Research Program of China(Grant No.2010CB731603)
文摘A review on the formation and unique physical and mechanical properties of metallic glassy fibers(MGFs)with the diameter ranging from micro to nano scales fabricated by a supercooled liquid extraction method(SLEM)is given.The SLEM method,through driving metallic glass rods in their supercooled liquid region via superplasticity,can fabricate MGFs with precisely designed and controlled size and properties,high structural uniformity and surface smoothness and extreme flexibility.The SLEM method is efficient and the MGFs can be continuously prepared by this method.A parameter f based on the thermal and rheological properties of MG-forming alloys is proposed to control the preparation and size of the fibers.We show that the novel MGFs with superior properties may attract intensive scientific interests and propel more engineering and functional applications.
基金co-supported by the Shenzhen Basic Research projects(JCYJ20200109144604020,JCYJ20200109144608205 and JCYJ20210324120001003)Yangzhou Hanjiang Science and Technology project(HJZ2021003)+1 种基金Ningbo 2025 major projects(2022Z013)Zhejiang basic public welfare research program(LGG20E050009)。
文摘Carbon fiber reinforced thermoplastic composites(CFRTP)and metals hybrid structures have been widely used in aircraft lightweight manufacturing.However,due to the significant difference in physical and chemical properties between CFRTP and metals,there are lots of challenges to connect them with high quality.Laser welding has a good application prospect in CFRTP and metals connection,and a significant research progress has been made in the exploration of CFRTP-metal laser joining mechanism,joining process optimization,joining strength improvement and joining defects controlling.However,there are still some problems need to be solved for this technology application.In this paper,the research progress of CFRTP-metal laser joining was summarized in three major aspects:theoretical modeling and simulation analysis,process exploration and parameter optimization,joint performance improvement and process innovation.And,problems and challenges of this technology were discussed,and the outlook of this research was provided.