Pinus massoniana L. was thermally treated with low melting point alloy as heating medium to investigate the strength properties changes. Contact angle, color and scanning electron microscopy were recorded to assess th...Pinus massoniana L. was thermally treated with low melting point alloy as heating medium to investigate the strength properties changes. Contact angle, color and scanning electron microscopy were recorded to assess the effectiveness of the treatment. Samples were pre-treated in a micro-wave for 5 min followed by metal bath heat treatment at 150, 180, and 210 °C for 2, 4, and 8 h,respectively. Strength properties of metal bath treated wood were decreased with increase temperature and time.Density, modulus of rupture, impact bending, modulus of elasticity were reduced for all treatments. Maximum compressive strength slightly increased at 150 °C for 4 h followed by gradual reduction. The Janka hardness was reduced in the tangential and radial directions. Treatment of the wood at 210 °C for 8 h caused the wood to become brittle and rupture. The contact angle was considerably higher after thermal treatment. The color of the wood became darker with increasing temperature of thermal treatment. Micrographs of the heat-treated samples showed damage to the cell wall with increase in temperature. Metal bath heat treatment of wood was carried out successfully and some strength properties were reduced.展开更多
A Fe61Co10Zr5W4B20 bulk metallic glass (BMG) with a diameter of 2 mm was prepared by using copper mould suction casting. The X-ray diffraction (XRD), differential scanning calorimetry (DSC), micro-hardness and c...A Fe61Co10Zr5W4B20 bulk metallic glass (BMG) with a diameter of 2 mm was prepared by using copper mould suction casting. The X-ray diffraction (XRD), differential scanning calorimetry (DSC), micro-hardness and compression tests were adopted to investigate the structure, thermal stability, especially, the effect of heat treatment on the micro-hardness and compression strength of this BMG. The BMG exhibits micro-hardness of about 1 207 Hv and compression fracture strength of about 1 707.6 MPa. After being annealed below the onset of crystallization temperature, the micro-hardness almost keeps constant. But after being annealed above the peak of crystallization temperature, the micro-hardness increases firstly and then declines gradually with the elongation of annealing time. However, annealed for the same period of time, the micro-hardness will increase with the rise of annealing temperature, while the compression fracture strength will apparently decrease.展开更多
In this study,a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum(8011) silicon carbide particulate composites.The process parameters are so...In this study,a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum(8011) silicon carbide particulate composites.The process parameters are solutionizing time,aging temperature,and aging time.The experiments were performed on an universal testing machine according to centre rotatable design matrix.A mathematical model was developed with the main and interactive effects of the parameters considered.The analysis of variance technique was used to check the adequacy of the developed model.The optimum parameters were obtained for maximum tensile strength.Fractographic examination shows the cracks and dimples on the fractured surfaces of heat-treated specimen.展开更多
A pseudoplastic metal nanoparticle fluid (PMNF) is used in nanoimprint to fabricate semiconductors and func- tional devices. The evaporation of the solvent and the sintering of the Au PMNF are investigated. The key ...A pseudoplastic metal nanoparticle fluid (PMNF) is used in nanoimprint to fabricate semiconductors and func- tional devices. The evaporation of the solvent and the sintering of the Au PMNF are investigated. The key parameters, which influence the morphology of patterning, such as the radius of metal particles, the concentra- tion of metal particles, the Hamaker constant of the solvent, viscosity of the fluids and the evaporation velocity, are analyzed. Based on a two-sphere sintering model, the equations are derived, which represent the relationships between the relative shrinkage and radius of the metal particles, sintering temperature and time. The optimal parameters for the heat treatment are provided in nanoimprint.展开更多
The microstructure of E911 deposited metal was observed and the effect of heat input and postweld heat treatment on microstructure and impact toughness was investigated. The microstructure consists of tempered martens...The microstructure of E911 deposited metal was observed and the effect of heat input and postweld heat treatment on microstructure and impact toughness was investigated. The microstructure consists of tempered martensite and residual δ- ferrite. The morphology of tempered martensite is columnar and the residual δ-ferrite is polygonal. With the increase in heat input, the width of columnar martensite grain and the size of residual δ-ferrite increased, whereas the volume fraction of residual δ-ferrite varied slightly. The impact toughness decreased as heat input increased. The result reveals that coarsening columnar martensite grain and δ-ferrite have greater effect on impact toughness than volume fraction of residual δ-ferrite. As the time of postweld heat treatment is exceeded 8h, aggregation of M23 C6occurs in some grain boundaries or lath interfaces. The partial aggregation of M23 C6 results in the decrease in impact toughness.展开更多
In piezoceramic ultrasonic devices,the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material.While the end of the hor...In piezoceramic ultrasonic devices,the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material.While the end of the horn usually serves near the melting point of the molten metal and is enclosed in an airtight chamber,so that it is difficult to experimentally measure the temperature of the transducer and its variation with time,which bring heavy difficulty to the design of the ultrasonic molten metal treatment system.To find a way out,conjugate heat transfer analysis of an ultrasonic molten metal treatment system is performed with coupled fluid and heat transfer finite element method.In modeling of the system,the RNG model and the SIMPLE algorithm are adopted for turbulence and nonlinear coupling between the momentum equation and the energy equation.Forced air cooling as well as natural air cooling is analyzed to compare the difference of temperature evolution.Numerical results show that,after about 350 s of working time,temperatures in the surface of the ceramic stacks in forced air cooling drop about 7 K compared with that in natural cooling.At 240 s,The molten metal surface emits heat radiation with a maximum rate of about 19 036 W/m2,while the heat insulation disc absorbs heat radiation at a maximum rate of about 7922 W/m2,which indicates the effectiveness of heat insulation of the asbestos pad.Transient heat transfer film coefficient and its distribution,which are difficult to be measured experimentally are also obtained through numerical simulation.At 240 s,the heat transfer film coefficient in the surface of the transducer ranges from–17.86 to 20.17 W/(m2?K).Compared with the trial and error method based on the test,the proposed research provides a more effective way in the design and analysis of the temperature control of the molten metal treatment system.展开更多
9Cr-1Mo ferritic steels have been used in the conventional power generation plants due to their excellent creep resistance. However, one of the main obstacles in welding 9Cr-1Mo steels is the formation of undesirable ...9Cr-1Mo ferritic steels have been used in the conventional power generation plants due to their excellent creep resistance. However, one of the main obstacles in welding 9Cr-1Mo steels is the formation of undesirable coarse columnar grains in weld metal whieh ean severely compromise the toughness. A new post-weld heat treatment (PWHT) is developed in the present work. Unlike the conventional processes in which the post-weld heat treatment is carried out below Ac1 , the use of temperatures above the Ac1 of 9Cr-1Mo alloy is considered. The new PWHT at a temperature above Ac1 improves the toughness of 9Cr-1Mo weld metals effectively. The improvement in toughness is mainly due to refinement and homogenization of mierostruetures. Key words展开更多
The mechanical response of a 17%(volume fraction) silicon carbide particles reinforced 2124 Al composite prepared by powder metallurgy techniques was studied by altering the matrix strength with different heat treatme...The mechanical response of a 17%(volume fraction) silicon carbide particles reinforced 2124 Al composite prepared by powder metallurgy techniques was studied by altering the matrix strength with different heat treatments. The fracture mechanisms and the deformation microstructure were examined by scanning electron microscopy. The results show that matrix strength appears to play an important role in influcing the behaviour of the composite under hardness and tensile loading conditions and also fracture mechanisms.The high matrix strength results in a larger decrease in yield strength due to the increasing damage probability. The tensile yield strength values decrease under peak aged and overaged condition whereas under the solutinized condition the opposite effect can be seen.展开更多
The composite plate made by explosion welding technology generally has high residual stress and bed plasticity due to the explosion reinforcement. The heat treatment can play a part of eliminating stress and recoverin...The composite plate made by explosion welding technology generally has high residual stress and bed plasticity due to the explosion reinforcement. The heat treatment can play a part of eliminating stress and recovering property.In this study,TA1/Q345 clad plate made by explosive welding was annealed at different temperatures.The microstructure,micro-hardness,and tensile,shear,and bending properties were analyzed after anneal.The result shows that there is fibrous structure in the bonding zone and the plastic deformation is severe,the grain growth and fibrous structure dribbles away with the temperature increasing.Micro-hardness in the interface is bigger than it on the both sides. Tensile and shear strength reduced with the temperature of heat treatment increasing.The propel anneal temperature for TA1/Q345 clad plate is 600展开更多
The dissimilar metals 1Crl8Ni9 and 16MnR are welded by shielded metal arc welding process using electrode A312. The corrosion experiments are carried out on welded joint samples, which is as-welded and post-weld heat ...The dissimilar metals 1Crl8Ni9 and 16MnR are welded by shielded metal arc welding process using electrode A312. The corrosion experiments are carried out on welded joint samples, which is as-welded and post-weld heat treatment at 650 ℃, 750 ℃ and 850 ℃, for 2 h in 70% sodium hydroxide solution. EDS and X-ray diffraction analysis are carried out on the samples after corrosion. Average corrosion rate calculation and microhardness measurement are conducted on both as- welded and post-weld heat treatment samples. The results indicate that average corrosion rate of as-welded joint metal is smaller than that of post-weld heat treatment joint metal. Compared with that of post-weld heat treatment at 750 ℃ and 850 ℃ for 2 h, the average corrosion rate of welded joint after post-weld heat treatment at 650 ℃ for 2 h increases greatly.展开更多
A kind of heat treatment technology of thermit welds was introduced in this paper. Through the heal treatment not only the mechanical properties are improved, but the hardness of head was redistributed. Heat treatreat...A kind of heat treatment technology of thermit welds was introduced in this paper. Through the heal treatment not only the mechanical properties are improved, but the hardness of head was redistributed. Heat treatreatment alleviated the soften of the quenched rail clue to welding. The technology has been successfully applied to lay the lines and crosses at Da-qin continuous line.展开更多
Overcasting is a new kind of dissimilar joining technique used to produce the aluminum(solid)/magnesium(liquid) bonding bi-metallic material in this study. For the Al/Mg(A390/AM60) bi-metallic samples, the inter...Overcasting is a new kind of dissimilar joining technique used to produce the aluminum(solid)/magnesium(liquid) bonding bi-metallic material in this study. For the Al/Mg(A390/AM60) bi-metallic samples, the interface microstructures are the research points, which directly influence the mechanical properties. It is, therefore, of vital importance to find a method to improve the interface microstructures. This research focused on the effect of the calcium(Ca) addition in the liquid Mg alloys and the heat treatment on the A390/AM60 interface microstructures of the bi-metallic samples. The testing results showed that, with Ca addition in AM60, owing to two possible reasons, the interface microstructure and the shear strength of the A390/AM60 bi-metallic samples could be improved. The heat treatment could further improve the interface microstructure and the mechanical properties by dissolving β-Mg_(17)Al_(12) into α-Mg and destroying the Mg_2Si layer structure.展开更多
基金financially supported by the Special Scientific Research Fund for Public Service Sectors of Forestry(Grant No.201504603)Science and Technology Projects of Fujian Province(2014NZ003)the National Natural Science Foundation of China(Grant Nos.31370560,31170520)
文摘Pinus massoniana L. was thermally treated with low melting point alloy as heating medium to investigate the strength properties changes. Contact angle, color and scanning electron microscopy were recorded to assess the effectiveness of the treatment. Samples were pre-treated in a micro-wave for 5 min followed by metal bath heat treatment at 150, 180, and 210 °C for 2, 4, and 8 h,respectively. Strength properties of metal bath treated wood were decreased with increase temperature and time.Density, modulus of rupture, impact bending, modulus of elasticity were reduced for all treatments. Maximum compressive strength slightly increased at 150 °C for 4 h followed by gradual reduction. The Janka hardness was reduced in the tangential and radial directions. Treatment of the wood at 210 °C for 8 h caused the wood to become brittle and rupture. The contact angle was considerably higher after thermal treatment. The color of the wood became darker with increasing temperature of thermal treatment. Micrographs of the heat-treated samples showed damage to the cell wall with increase in temperature. Metal bath heat treatment of wood was carried out successfully and some strength properties were reduced.
基金Supported by the National Natural Science Foundation of China (Nos.50971046, 50771037, 50371020)the Combination Projects for Guangdong Province and the Ministry of Education (No.2011B090400485)Doctoral Foundation of Guangdong University of Technology(No.093046)
文摘A Fe61Co10Zr5W4B20 bulk metallic glass (BMG) with a diameter of 2 mm was prepared by using copper mould suction casting. The X-ray diffraction (XRD), differential scanning calorimetry (DSC), micro-hardness and compression tests were adopted to investigate the structure, thermal stability, especially, the effect of heat treatment on the micro-hardness and compression strength of this BMG. The BMG exhibits micro-hardness of about 1 207 Hv and compression fracture strength of about 1 707.6 MPa. After being annealed below the onset of crystallization temperature, the micro-hardness almost keeps constant. But after being annealed above the peak of crystallization temperature, the micro-hardness increases firstly and then declines gradually with the elongation of annealing time. However, annealed for the same period of time, the micro-hardness will increase with the rise of annealing temperature, while the compression fracture strength will apparently decrease.
文摘In this study,a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum(8011) silicon carbide particulate composites.The process parameters are solutionizing time,aging temperature,and aging time.The experiments were performed on an universal testing machine according to centre rotatable design matrix.A mathematical model was developed with the main and interactive effects of the parameters considered.The analysis of variance technique was used to check the adequacy of the developed model.The optimum parameters were obtained for maximum tensile strength.Fractographic examination shows the cracks and dimples on the fractured surfaces of heat-treated specimen.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51175479 and 51475436the Education Department of Henan Province under Grant Nos 13A460725 and 2013GGJS-001
文摘A pseudoplastic metal nanoparticle fluid (PMNF) is used in nanoimprint to fabricate semiconductors and func- tional devices. The evaporation of the solvent and the sintering of the Au PMNF are investigated. The key parameters, which influence the morphology of patterning, such as the radius of metal particles, the concentra- tion of metal particles, the Hamaker constant of the solvent, viscosity of the fluids and the evaporation velocity, are analyzed. Based on a two-sphere sintering model, the equations are derived, which represent the relationships between the relative shrinkage and radius of the metal particles, sintering temperature and time. The optimal parameters for the heat treatment are provided in nanoimprint.
基金Acknowledgements The authors acknowledge gratefully to the financial support for this work from National Natural Science Foundation of China and Baosteel (No. 50734004) and the assistance of Welding Laboratory of Baosteel Group.
文摘The microstructure of E911 deposited metal was observed and the effect of heat input and postweld heat treatment on microstructure and impact toughness was investigated. The microstructure consists of tempered martensite and residual δ- ferrite. The morphology of tempered martensite is columnar and the residual δ-ferrite is polygonal. With the increase in heat input, the width of columnar martensite grain and the size of residual δ-ferrite increased, whereas the volume fraction of residual δ-ferrite varied slightly. The impact toughness decreased as heat input increased. The result reveals that coarsening columnar martensite grain and δ-ferrite have greater effect on impact toughness than volume fraction of residual δ-ferrite. As the time of postweld heat treatment is exceeded 8h, aggregation of M23 C6occurs in some grain boundaries or lath interfaces. The partial aggregation of M23 C6 results in the decrease in impact toughness.
基金Supported by Beijing Municipal Natural Science Foundation of China(Grant No.3093027)
文摘In piezoceramic ultrasonic devices,the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material.While the end of the horn usually serves near the melting point of the molten metal and is enclosed in an airtight chamber,so that it is difficult to experimentally measure the temperature of the transducer and its variation with time,which bring heavy difficulty to the design of the ultrasonic molten metal treatment system.To find a way out,conjugate heat transfer analysis of an ultrasonic molten metal treatment system is performed with coupled fluid and heat transfer finite element method.In modeling of the system,the RNG model and the SIMPLE algorithm are adopted for turbulence and nonlinear coupling between the momentum equation and the energy equation.Forced air cooling as well as natural air cooling is analyzed to compare the difference of temperature evolution.Numerical results show that,after about 350 s of working time,temperatures in the surface of the ceramic stacks in forced air cooling drop about 7 K compared with that in natural cooling.At 240 s,The molten metal surface emits heat radiation with a maximum rate of about 19 036 W/m2,while the heat insulation disc absorbs heat radiation at a maximum rate of about 7922 W/m2,which indicates the effectiveness of heat insulation of the asbestos pad.Transient heat transfer film coefficient and its distribution,which are difficult to be measured experimentally are also obtained through numerical simulation.At 240 s,the heat transfer film coefficient in the surface of the transducer ranges from–17.86 to 20.17 W/(m2?K).Compared with the trial and error method based on the test,the proposed research provides a more effective way in the design and analysis of the temperature control of the molten metal treatment system.
文摘9Cr-1Mo ferritic steels have been used in the conventional power generation plants due to their excellent creep resistance. However, one of the main obstacles in welding 9Cr-1Mo steels is the formation of undesirable coarse columnar grains in weld metal whieh ean severely compromise the toughness. A new post-weld heat treatment (PWHT) is developed in the present work. Unlike the conventional processes in which the post-weld heat treatment is carried out below Ac1 , the use of temperatures above the Ac1 of 9Cr-1Mo alloy is considered. The new PWHT at a temperature above Ac1 improves the toughness of 9Cr-1Mo weld metals effectively. The improvement in toughness is mainly due to refinement and homogenization of mierostruetures. Key words
文摘The mechanical response of a 17%(volume fraction) silicon carbide particles reinforced 2124 Al composite prepared by powder metallurgy techniques was studied by altering the matrix strength with different heat treatments. The fracture mechanisms and the deformation microstructure were examined by scanning electron microscopy. The results show that matrix strength appears to play an important role in influcing the behaviour of the composite under hardness and tensile loading conditions and also fracture mechanisms.The high matrix strength results in a larger decrease in yield strength due to the increasing damage probability. The tensile yield strength values decrease under peak aged and overaged condition whereas under the solutinized condition the opposite effect can be seen.
基金supported by National Natural Science Foundation of China(Grant No.51274162)Scientific Research Plan Project of Shaanxi Education Department(Grant No.14JK1539)Collaborative Innovation Project of Shaanxi Province(Grant No.2015XT-39)
文摘The composite plate made by explosion welding technology generally has high residual stress and bed plasticity due to the explosion reinforcement. The heat treatment can play a part of eliminating stress and recovering property.In this study,TA1/Q345 clad plate made by explosive welding was annealed at different temperatures.The microstructure,micro-hardness,and tensile,shear,and bending properties were analyzed after anneal.The result shows that there is fibrous structure in the bonding zone and the plastic deformation is severe,the grain growth and fibrous structure dribbles away with the temperature increasing.Micro-hardness in the interface is bigger than it on the both sides. Tensile and shear strength reduced with the temperature of heat treatment increasing.The propel anneal temperature for TA1/Q345 clad plate is 600
文摘The dissimilar metals 1Crl8Ni9 and 16MnR are welded by shielded metal arc welding process using electrode A312. The corrosion experiments are carried out on welded joint samples, which is as-welded and post-weld heat treatment at 650 ℃, 750 ℃ and 850 ℃, for 2 h in 70% sodium hydroxide solution. EDS and X-ray diffraction analysis are carried out on the samples after corrosion. Average corrosion rate calculation and microhardness measurement are conducted on both as- welded and post-weld heat treatment samples. The results indicate that average corrosion rate of as-welded joint metal is smaller than that of post-weld heat treatment joint metal. Compared with that of post-weld heat treatment at 750 ℃ and 850 ℃ for 2 h, the average corrosion rate of welded joint after post-weld heat treatment at 650 ℃ for 2 h increases greatly.
文摘A kind of heat treatment technology of thermit welds was introduced in this paper. Through the heal treatment not only the mechanical properties are improved, but the hardness of head was redistributed. Heat treatreatment alleviated the soften of the quenched rail clue to welding. The technology has been successfully applied to lay the lines and crosses at Da-qin continuous line.
基金Funded by the National Natural Science Foundation of China(No.51571080)
文摘Overcasting is a new kind of dissimilar joining technique used to produce the aluminum(solid)/magnesium(liquid) bonding bi-metallic material in this study. For the Al/Mg(A390/AM60) bi-metallic samples, the interface microstructures are the research points, which directly influence the mechanical properties. It is, therefore, of vital importance to find a method to improve the interface microstructures. This research focused on the effect of the calcium(Ca) addition in the liquid Mg alloys and the heat treatment on the A390/AM60 interface microstructures of the bi-metallic samples. The testing results showed that, with Ca addition in AM60, owing to two possible reasons, the interface microstructure and the shear strength of the A390/AM60 bi-metallic samples could be improved. The heat treatment could further improve the interface microstructure and the mechanical properties by dissolving β-Mg_(17)Al_(12) into α-Mg and destroying the Mg_2Si layer structure.