In order to investigate the physical mechanism of metal magnetic memory testing, both the influences of earth magnetic field and applied stress on magnetic domain structure were discussed. Static tension and fatigue t...In order to investigate the physical mechanism of metal magnetic memory testing, both the influences of earth magnetic field and applied stress on magnetic domain structure were discussed. Static tension and fatigue tests for low carbon steel plate specimens were carried out on hydraulic servo testing machine of MTS810 type and magnetic signals were measured during the processes by the type of EMS-2003 instrument. The results indicate that the initial magnetic signals of specimens are different before loading. The magnetic signals curves are transformed from initial random to regular pattern due to the effect of two types of loads. However, the shape and distribution of magnetic signal curves in the elastic region are different from that of plastic region in tension test. While in fatigue test those magnetic signals curves corresponding to different cycles are similar. The H_p(y) value of magnetic signals on the fracture zone increases dramatically at the breaking transient time and positive-negative magnetic poles occur on the two parts of fracture zone.展开更多
Tension-compression fatigue test was performed on 0.45% C steel specimens.Normal and tangential components of magnetic memory testing signals,Hp(y) and Hp(x) signals,with their characteristics,K of Hp(y) and Hp(x)M of...Tension-compression fatigue test was performed on 0.45% C steel specimens.Normal and tangential components of magnetic memory testing signals,Hp(y) and Hp(x) signals,with their characteristics,K of Hp(y) and Hp(x)M of Hp(x),throughout the fatigue process were presented and analyzed.Abnormal peaks of Hp(y) and peak of Hp(x) reversed after loading; Hp(y) curves rotated clockwise and Hp(x) curves elevated significantly with the increase of fatigue cycle number at the first a few fatigue cycles,both Hp(y) and Hp(x) curves were stable after that,the amplitude of abnormal peaks of Hp(y) and peak value of Hp(x) increased more quickly after fatigue crack initiation.Abnormal peaks of Hp(y) and peak of Hp(x) at the notch reversed again after failure.The characteristics were found to exhibit consistent tendency in the whole fatigue life and behave differently in different stages of fatigue.In initial and crack developing stages,the characteristics increased significantly due to dislocations increase and crack propagation,respectively.In stable stage,the characteristics remained constant as a result of dislocation blocking,K value ranged from 20 to 30 A/(m·mm)-1,and Hp(x)M ranged from 270 to 300 A/m under the test parameters in this work.After failure,both abnormal peaks of Hp(y) and peak of Hp(x) reversed,K value was 133 A/(m·mm)-1 and Hp(x)M was-640 A/m.The results indicate that the characteristics of Hp(y) and Hp(x) signals were related to the accumulation of fatigue,so it is feasible and applicable to monitor fatigue damage of ferromagnetic components using metal magnetic memory testing(MMMT).展开更多
The correlation between the stress concentration and the spontaneous magnetic signals of metal magnetic memory(MMM) was investigated via tensile tests. Sheet specimens of the Q235 steel were machined into standard bar...The correlation between the stress concentration and the spontaneous magnetic signals of metal magnetic memory(MMM) was investigated via tensile tests. Sheet specimens of the Q235 steel were machined into standard bars with rectangular holes to obtain various stress concentration factors. The tangential component Hp(x) of MMM signals and its related magnetic characteristic parameters throughout the loading process were presented and analyzed. It is found that the tangential component Hp(x) is sensitive to the abnormal magnetic changes caused by the local stress concentration in the defect area. The minimum magnetic field is positively correlated to the magnitude of the load and the distance from the notch. The tangential magnetic stress concentration factor presents good numerical stability during the entire loading process, and can be used to evaluate the stress concentration factor. The results obtained will be a complement to the MMM technique.展开更多
Corrosion can be very harmful to the service life and several properties of reinforced concrete structures.The metal magnetic memory(MMM)method,as a newly developed spontaneous magnetic flux leakage(SMFL)non-destructi...Corrosion can be very harmful to the service life and several properties of reinforced concrete structures.The metal magnetic memory(MMM)method,as a newly developed spontaneous magnetic flux leakage(SMFL)non-destructive testing(NDT)technique,is considered a potentially viable method for detecting corrosion damage in reinforced concrete members.To this end,in this paper,the indoor electrochemical method was employed to accelerate the corrosion of outsourced concrete specimens with different steel bar diameters,and the normal components Bz and its gradient of the SMFL fields on the specimen surfaces were investigated based on the metal magnetic memory(MMM)method.The experimental results showed that the SMFL experimental Bz curves are consistent with the analytical results of the theoretical model.Furthermore,the crest-to-trough behavior on the Bz signal curve and its zero-point gradient spacing can more accurately indicate the corroded area’s extent.Then,a magnetic characteristic parameter W based on a large amount of experimental data was established to characterize the degree of corrosion of the steel bars.The magnetic characteristic parameter W is linearly related to the maximum cross-sectional area loss rateof the corroded reinforcement.This paper will lay the foundation for future research on corrosion detection of reinforced concrete structures based on the MMM method and provide a feasible way for non-destructive detection of corrosion independent of the influence of reinforcement diameter and magnetization history.展开更多
Influences of inspecting time-interval and location on varying behavior of metal magnetic memory (MMM) signals of defects were studied. Different areas in two precracked weldments were inspected at different time-inte...Influences of inspecting time-interval and location on varying behavior of metal magnetic memory (MMM) signals of defects were studied. Different areas in two precracked weldments were inspected at different time-intervals by type TSC-1M-4 stress-concentration magnetic inspector to obtain MMM signals. Mechanisms of MMM signals varying behavior with inspecting time and space were analyzed and discussed respectively. It is found that MMM signals don't change with inspecting time-interval, since stress field and magnetic leakage field maintain unchanged at any time after welding. On the other hand, MMM signals differ greatly for different inspecting locations, because stress field and magnetic leakage field are unevenly distributed in defective ferromagnetic materials.展开更多
To avoid the serious accidents caused by the failure fastening bolts on reciprocating compressor cylinder cover,a new nondestructive testing(NDT) technology,metal magnetic memory(MMM) testing,was applied to safety eva...To avoid the serious accidents caused by the failure fastening bolts on reciprocating compressor cylinder cover,a new nondestructive testing(NDT) technology,metal magnetic memory(MMM) testing,was applied to safety evaluating and failure analyzing for the fastening bolts.Based on the dynamic stress calculation of the failure bolts,MMM testing was carried out at workshop.Given are the MMM stress distribution characteristics of the failure bolts and fracture faces.It has been found that the MMM signal variation amplitude of the crack transition zone in the fracture surface is minimal,that of the crack initiation zone is in the middle,and that of the tear fracture zone is maximal.The failure reasons were analyzed with MMM effect.The results of the metallographic examination showed that the validity and feasibility of MMM testing and failure analysis.This means MMM technology is a new,fast and validity method of failure analysis.展开更多
文摘In order to investigate the physical mechanism of metal magnetic memory testing, both the influences of earth magnetic field and applied stress on magnetic domain structure were discussed. Static tension and fatigue tests for low carbon steel plate specimens were carried out on hydraulic servo testing machine of MTS810 type and magnetic signals were measured during the processes by the type of EMS-2003 instrument. The results indicate that the initial magnetic signals of specimens are different before loading. The magnetic signals curves are transformed from initial random to regular pattern due to the effect of two types of loads. However, the shape and distribution of magnetic signal curves in the elastic region are different from that of plastic region in tension test. While in fatigue test those magnetic signals curves corresponding to different cycles are similar. The H_p(y) value of magnetic signals on the fracture zone increases dramatically at the breaking transient time and positive-negative magnetic poles occur on the two parts of fracture zone.
基金Projects(50975283,50975287)supported by the National Natural Science Foundation of ChinaProject(2011CB013401)supported by the National Basic Research Program,China
文摘Tension-compression fatigue test was performed on 0.45% C steel specimens.Normal and tangential components of magnetic memory testing signals,Hp(y) and Hp(x) signals,with their characteristics,K of Hp(y) and Hp(x)M of Hp(x),throughout the fatigue process were presented and analyzed.Abnormal peaks of Hp(y) and peak of Hp(x) reversed after loading; Hp(y) curves rotated clockwise and Hp(x) curves elevated significantly with the increase of fatigue cycle number at the first a few fatigue cycles,both Hp(y) and Hp(x) curves were stable after that,the amplitude of abnormal peaks of Hp(y) and peak value of Hp(x) increased more quickly after fatigue crack initiation.Abnormal peaks of Hp(y) and peak of Hp(x) at the notch reversed again after failure.The characteristics were found to exhibit consistent tendency in the whole fatigue life and behave differently in different stages of fatigue.In initial and crack developing stages,the characteristics increased significantly due to dislocations increase and crack propagation,respectively.In stable stage,the characteristics remained constant as a result of dislocation blocking,K value ranged from 20 to 30 A/(m·mm)-1,and Hp(x)M ranged from 270 to 300 A/m under the test parameters in this work.After failure,both abnormal peaks of Hp(y) and peak of Hp(x) reversed,K value was 133 A/(m·mm)-1 and Hp(x)M was-640 A/m.The results indicate that the characteristics of Hp(y) and Hp(x) signals were related to the accumulation of fatigue,so it is feasible and applicable to monitor fatigue damage of ferromagnetic components using metal magnetic memory testing(MMMT).
基金Funded by the Zhejiang Provincial Natural Science Foundation of China(LZ12E08003)the Fundamental Research Funds for the Central Universities,China(2015QNA4028)
文摘The correlation between the stress concentration and the spontaneous magnetic signals of metal magnetic memory(MMM) was investigated via tensile tests. Sheet specimens of the Q235 steel were machined into standard bars with rectangular holes to obtain various stress concentration factors. The tangential component Hp(x) of MMM signals and its related magnetic characteristic parameters throughout the loading process were presented and analyzed. It is found that the tangential component Hp(x) is sensitive to the abnormal magnetic changes caused by the local stress concentration in the defect area. The minimum magnetic field is positively correlated to the magnitude of the load and the distance from the notch. The tangential magnetic stress concentration factor presents good numerical stability during the entire loading process, and can be used to evaluate the stress concentration factor. The results obtained will be a complement to the MMM technique.
文摘Corrosion can be very harmful to the service life and several properties of reinforced concrete structures.The metal magnetic memory(MMM)method,as a newly developed spontaneous magnetic flux leakage(SMFL)non-destructive testing(NDT)technique,is considered a potentially viable method for detecting corrosion damage in reinforced concrete members.To this end,in this paper,the indoor electrochemical method was employed to accelerate the corrosion of outsourced concrete specimens with different steel bar diameters,and the normal components Bz and its gradient of the SMFL fields on the specimen surfaces were investigated based on the metal magnetic memory(MMM)method.The experimental results showed that the SMFL experimental Bz curves are consistent with the analytical results of the theoretical model.Furthermore,the crest-to-trough behavior on the Bz signal curve and its zero-point gradient spacing can more accurately indicate the corroded area’s extent.Then,a magnetic characteristic parameter W based on a large amount of experimental data was established to characterize the degree of corrosion of the steel bars.The magnetic characteristic parameter W is linearly related to the maximum cross-sectional area loss rateof the corroded reinforcement.This paper will lay the foundation for future research on corrosion detection of reinforced concrete structures based on the MMM method and provide a feasible way for non-destructive detection of corrosion independent of the influence of reinforcement diameter and magnetization history.
基金Project(50475113) supported by the National Natural Science Foundation of ChinaProject(20030056002) supported by Specialized Research Fund for Doctoral Program of Higher Education, China
文摘Influences of inspecting time-interval and location on varying behavior of metal magnetic memory (MMM) signals of defects were studied. Different areas in two precracked weldments were inspected at different time-intervals by type TSC-1M-4 stress-concentration magnetic inspector to obtain MMM signals. Mechanisms of MMM signals varying behavior with inspecting time and space were analyzed and discussed respectively. It is found that MMM signals don't change with inspecting time-interval, since stress field and magnetic leakage field maintain unchanged at any time after welding. On the other hand, MMM signals differ greatly for different inspecting locations, because stress field and magnetic leakage field are unevenly distributed in defective ferromagnetic materials.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 11072056)Natural Science Foundation of Heilongjiang Province of China(Grant No.A200907)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20092322120001)
文摘To avoid the serious accidents caused by the failure fastening bolts on reciprocating compressor cylinder cover,a new nondestructive testing(NDT) technology,metal magnetic memory(MMM) testing,was applied to safety evaluating and failure analyzing for the fastening bolts.Based on the dynamic stress calculation of the failure bolts,MMM testing was carried out at workshop.Given are the MMM stress distribution characteristics of the failure bolts and fracture faces.It has been found that the MMM signal variation amplitude of the crack transition zone in the fracture surface is minimal,that of the crack initiation zone is in the middle,and that of the tear fracture zone is maximal.The failure reasons were analyzed with MMM effect.The results of the metallographic examination showed that the validity and feasibility of MMM testing and failure analysis.This means MMM technology is a new,fast and validity method of failure analysis.