期刊文献+
共找到452篇文章
< 1 2 23 >
每页显示 20 50 100
Investigation of Interfaces in Remelted A356-SiC Particulate Duralcan Metal Matrix Composite 被引量:1
1
作者 邵贝羚 李永洪 +3 位作者 刘安生 石力开 曹利 王传英 《Rare Metals》 SCIE EI CAS CSCD 1992年第1期64-65,共2页
For the manufacture of Al-based metalmatrix composites, the foundry productionroute can provide less expensive products witha greater flexibility in meeting designer’s needsamong a vaviety of fablication routes. Rece... For the manufacture of Al-based metalmatrix composites, the foundry productionroute can provide less expensive products witha greater flexibility in meeting designer’s needsamong a vaviety of fablication routes. Recent-ly, a commercially produced foundry ingot,the Duralcan composite of A356 Al alloy +20 展开更多
关键词 Investigation of interfaces in Remelted A356-SiC Particulate Duralcan metal matrix composite SIC
下载PDF
Development of Cu-Exfoliated Graphite Nanoplatelets (xGnP) Metal Matrix Composite by Powder Metallurgy Route
2
作者 Syed Nasimul Alam Lailesh Kumar Nidhi Sharma 《Graphene》 2015年第4期91-111,共21页
In the present investigation the possibility of using exfoliated graphite nanoplatelets (xGnP) as reinforcement in order to enhance the mechanical properties of Cu-based metal matrix composites is explored. Cu-based m... In the present investigation the possibility of using exfoliated graphite nanoplatelets (xGnP) as reinforcement in order to enhance the mechanical properties of Cu-based metal matrix composites is explored. Cu-based metal matrix composites reinforced with different amounts of xGnP were fabricated by powder metallurgy route. The microstructure, sliding wear behaviour and mechanical properties of the Cu-xGnP composites were investigated. xGnP has been synthesized from the graphite intercalation compounds (GIC) through rapid evaporation of the intercalant at an elevated temperature. The thermally exfoliated graphite was later sonicated for a period of 5 h in acetone in order to achieve further exfoliation. The xGnP synthesized was characterized using SEM, HRTEM, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. The Cu and xGnP powder mixtures were consolidated under a load of 565 MPa followed by sintering at 850°C for 2 h in inert atmosphere. Cu-1, 2, 3 and 5 wt% xGnP composites were developed. Results of the wear test show that there is a significant improvement in the wear resistance of the composites up to addition of 2 wt% of xGnP. Hardness, tensile strength and strain at failure of the various Cu-xGnP composites also show improvement upto the addition of 2 wt% xGnP beyond which there is a decrease in these properties. The density of the composites decreases with the addition of higher wt% of xGnP although addition of higher wt% of xGnP leads to higher sinterability and densification of the composites, resulting in higher relative density values. The nature of fracture in the pure Cu as well as the various Cu-xGnP composites was found to be ductile. Nanoplatelets of graphite were found firmly embedded in the Cu matrix in case of Cu-xGnP composites containing low wt% of xGnP. 展开更多
关键词 powder metallurgy EXFOLIATED GRAPHITE NANOPLATELETS (xGnP) Cu-Based metal matrix composite SLIDING Wear
下载PDF
Ballistic performance of titanium-based layered composites made using blended elemental powder metallurgy and hot isostatic pressing
3
作者 Pavlo Markovsky Jacek Janiszewski +5 位作者 Dmytro Savvakin Oleksandr Stasyuk Bartosz Fikus Victor Samarov Vianey Ellison Sergey V.Prikhodko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期1-14,共14页
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to... Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually. 展开更多
关键词 metal matrix composites powder metallurgy Titanium hydride powder Master alloy Titanium carbide Titanium boride Hot isostatic pressing Ballistic tests
下载PDF
Ceramic particles reinforced copper matrix composites manufactured by advanced powder metallurgy:preparation, performance, and mechanisms 被引量:7
4
作者 Yi-Fan Yan Shu-Qing Kou +4 位作者 Hong-Yu Yang Shi-Li Shu Feng Qiu Qi-Chuan Jiang Lai-Chang Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期200-234,共35页
Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and e... Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields. 展开更多
关键词 copper matrix composites advanced powder metallurgy model prediction particle characteristics strengthening mechanism
下载PDF
Preparation and Mechanical Properties of-SiC Nanoparticle Reinforced Aluminum Matrix Composite by a Multi-step Powder Metallurgy Process 被引量:5
5
作者 WANG Linong WU Hao +2 位作者 WU Xingping CHEN Minghai LIU Ning 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1059-1063,共5页
β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructur... β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructures of the as-prepared composites were observed by scanning electronic microscopy (SEM), and the mechanical properties were characterized by tensile strength measurement and Brinell hardness test. The experimental results revealed that the tensile strength of the composite with the addition of 5wt%/3-SIC nanoprtieles could be increased to 215 MPa, increasing by 110% compared with pure A1 matrix. Comparative experiments reflected that theβ-SIC nanoprticles showed significant reinforcement effect than traditional a-SiC micro-sized particles. The preparation process and sintering procedure were investigated to develop a cost effective preparation strategy to fabricate nano-SiCp/A1 composite. 展开更多
关键词 Β-SIC NANOPARTICLES particulate reinforced Al matrix composite powder metallurgy
下载PDF
Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy 被引量:13
6
作者 Xiang Zeng Jie Teng +3 位作者 Jin-gang Yu Ao-shuang Tan Ding-fa Fu Hui Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第1期102-109,共8页
Graphene-reinforced aluminum (AI) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness an... Graphene-reinforced aluminum (AI) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al com- posite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphol- ogies, chemical compositions, and microstructures of the graphene and the graphene/A1 composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed. 展开更多
关键词 GRAPHENE metal matrix composites solution mixing powder metallurgy mechanical properties
下载PDF
Development of Flake Powder Metallurgy in Fabricating Metal Matrix Composites:A Review 被引量:4
7
作者 Genlian Fan Run Xu +2 位作者 Zhanqiu Tan Di Zhang Zhiqiang Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第5期806-815,共10页
Powder metallurgy (PM) is one of the most applied processes in the fabrication of metal matrix composites (MMCs). Recently, a novel PM strategy called flake PM was developed to fabricate MMCs with nano-laminated o... Powder metallurgy (PM) is one of the most applied processes in the fabrication of metal matrix composites (MMCs). Recently, a novel PM strategy called flake PM was developed to fabricate MMCs with nano-laminated or hierarchical architectures. The name "flake PM" was derived from the use of flake metal powders, which could benefit the uniform dispersion of reinforcements in the metal matrices and thus result in balanced strength and ductility. Flake PM has been proved to be successful in the dispersion of nano aluminum oxides, carbon nanotubes, graphene nano-sheets, and microsized B4C particles in aluminum or copper matrix. This paper reviews the technique and mechanism developments of flake PM in previous studies, and foresees the future develop of this new fabricating method. 展开更多
关键词 metal matrix composites Flake powder metallurgy Micro- and nano-composites ARCHITECTURES Strength and ductility
原文传递
The Effects of Interfaces on Stress Transfer in Short Fiber Reinforced Metal Matrix Composites
8
作者 康国政 高庆 刘世楷 《Journal of Modern Transportation》 1998年第1期48-53,共6页
In this paper, the effects of interface properties on the stress transfer between matrix and fiber in short fiber reinforced metal matrix composites (SFRMMCs) is studied with the method of the elasto plastic finite ... In this paper, the effects of interface properties on the stress transfer between matrix and fiber in short fiber reinforced metal matrix composites (SFRMMCs) is studied with the method of the elasto plastic finite element. The interface properties include Young’s modulus, thickness and elasto plastic performances. In the calculation an interfacial layer with given thickness is introduced into the single fiber model. It is shown that, for a soft interface, the variation in interfacial properties influences the stress transfer greatly. 展开更多
关键词 metal matrix composites interface stress transfer finite element method
下载PDF
Hot deformation behaviors of 35% SiC_p/2024Al metal matrix composites 被引量:6
9
作者 郝世明 谢敬佩 +3 位作者 王爱琴 王文焱 李继文 孙浩亮 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2468-2474,共7页
The hot deformation behaviors of 35%SiCp/2024 aluminum alloy composites were studied by hot compression tests using Gleeble-1500D thermo-mechanical simulator at temperatures ranging from 350 to 500 °C under strai... The hot deformation behaviors of 35%SiCp/2024 aluminum alloy composites were studied by hot compression tests using Gleeble-1500D thermo-mechanical simulator at temperatures ranging from 350 to 500 °C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 225.4 kJ/mol. To demonstrate the potential workability, the stable zones and the instability zones in the processing map were identified and verified through micrographs. Considering processing map and microstructure, the hot deformation should be carried out at the temperature of 500 °C and the strain rate of 0.1-1 s-1. 展开更多
关键词 metal matrix composites constitutive equations processing map MICROSTRUCTURE powder metallurgy
下载PDF
Corrosion properties in a simulated body fluid of Mg/β-TCP composites prepared by powder metallurgy 被引量:2
10
作者 Yong Wang Ze-hong Wu +2 位作者 Hong Zhou Zhi-dong Liao Heng-fei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第11期1040-1044,共5页
Magnesium matrix composites (MMC) reinforced with 5wt% tricalcium phosphate (TCP) particles were prepared by powder metallurgy. Pure magnesium (CP-Mg) was fabricated by the same procedure for comparison. Scannin... Magnesium matrix composites (MMC) reinforced with 5wt% tricalcium phosphate (TCP) particles were prepared by powder metallurgy. Pure magnesium (CP-Mg) was fabricated by the same procedure for comparison. Scanning electron microscopy and en- ergy-dispersive X-ray spectroscopy analyses revealed that TCP particles were distributed homogeneously in the MMC. In order to investi- gate the corrosion properties, MMC samples were immersed in a simulated body fluid (SBF) at 310~0.5 K for 72 h. The mass loss of the samples in SBF and the pH values of the SBF were evaluated. Moreover, electrochemical measurements were conducted in the SBF. It was shown that the corrosion rate of the MMC decreased with the addition of TCP compared with CP-Mg. Hydroxyapatite was formed on the surface of MMC samples after immersion in the SBF for 72 h but not on the surface of CP-Mg. 展开更多
关键词 metallic matrix composites powder technology corrosion HYDROXYAPATITE MAGNESIUM
下载PDF
Interface-dominated mechanical behavior in advanced metal matrix composites 被引量:3
11
作者 Qiang Guo Yifan Han Di Zhang 《Nano Materials Science》 CAS 2020年第1期66-71,共6页
Metal matrix composites(MMCs)incorporate a reinforcing or functional secondary phase into a metal matrix to achieve specific properties.Of the parameters which may affect the mechanical behavior of MMCs,the structure ... Metal matrix composites(MMCs)incorporate a reinforcing or functional secondary phase into a metal matrix to achieve specific properties.Of the parameters which may affect the mechanical behavior of MMCs,the structure and properties of the reinforcement/matrix interface play a crucial role.This article reviews recent developments in measuring the interfacial properties in advanced MMCs,with an emphasis on the use of micro-/nano-mechanical testing approaches.It is shown that,with the novel in situ and ex situ experimental capability,researchers can now obtain some of the critical interfacial properties as well as the effects of reinforcement/matrix interfaces on the composites’deformation and failure mechanisms that were unattainable previously by conventional methodologies.Moreover,the micro-/nano-mechanical testing platform allows for both fundamental and applied research on the composites’mechanical performance under service conditions,which is considered a promising and emerging research direction. 展开更多
关键词 metal matrix compositeS interface Mechanical behavior NANOSTRUCTURE Strengthening
下载PDF
Fabrication and characterization copper/diamond composites for heat sink application using powder metallurgy 被引量:3
12
作者 Zeinab Abdel Hamid Sayed F. Moustafa +2 位作者 Fatma A. Morsy Nevien Abdel Atty khalifa Fatma Abdel Mouez 《Natural Science》 2011年第11期936-947,共12页
Copper composites reinforced with diamond particles were fabricated by the powder metallurgical technique. Copper matrix and diamond powders were mixed mechanically, cold com- pacted at 100 bar then sintered at 900?C.... Copper composites reinforced with diamond particles were fabricated by the powder metallurgical technique. Copper matrix and diamond powders were mixed mechanically, cold com- pacted at 100 bar then sintered at 900?C. The prepared powders and sintered copper/diamond composites were investigated using X-ray diffraction (XRD) and scanning electron microscope equipped with an energy dispersive X-ray analysis (SEM/EDS). The effect of diamond contents in the Cu/diamond composite on the different properties of the composite was studied. On fracture surfaces of the Cu/uncoated diamond composites, it was found that there is a very weak bonding between diamonds and pure copper matrix. In order to improve the bonding strength between copper and the reinforcement, diamond particles were electroless coated with NiWB alloy. The results show that coated diamond particles distribute uniformly in copper composite and the interface between diamond particles and Cu matrix is clear and well bonded due to the formation of a thin layer from WB2, Ni3B, and BC2 between Cu and diamond interfaces. The properties of the composites materials using coated powder, such as hardness, transverse rupture strength, thermal conductivity, and coefficient of thermal expansion (CTE) were exhibit greater values than that of the composites using uncoated diamond powder. Additionally, the results reveals that the maximum diamond incorporation was attained at 20 Vf%. Actually, Cu/20 Vf% coated diamond com- posite yields a high thermal conductivity of 430 W/mK along with a low coefficient of thermal expansion (CTE) 6 × 10–6/K. 展开更多
关键词 powder metallurgy Ceramic-matrix compositeS (CMCs) Ceramics Coating ELECTROLESS
下载PDF
Tribological Characterization of Hybrid Metal Matrix Composites Processed by Powder Metallurgy 被引量:2
13
作者 M. Megahed M. A. Attia +1 位作者 M. Abdelhameed A. G. El-Shafei 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第8期781-790,共10页
Aluminum (Al)-based aluminum oxide (Al2O3) and silicon carbide (SIC) particles hybrid metal matrix com- posites were processed by powder metallurgy technique, followed by sintering at 500 ℃ and then hot extrusi... Aluminum (Al)-based aluminum oxide (Al2O3) and silicon carbide (SIC) particles hybrid metal matrix com- posites were processed by powder metallurgy technique, followed by sintering at 500 ℃ and then hot extrusion. The tribological properties of these composites with different weight fractions of Al2O3 and SiC were investigated; extrusion process significantly reduces the extent of porosity after cold compaction and sintering processes. Hybridization of the two reinforcements improved hardness and wear resistance of the composites. With an increase in SiC content, hardness was increased and consequently the wear resistance was enhanced also. Scanning electron microscopy observations show a better interfacial bond between matrix and reinforcements and a better distribution of the reinforcements. 展开更多
关键词 Hybrid metal matrix composite powder metallurgy Abrasive wear HARDNESS POROSITY
原文传递
Distribution of stress and strain between adjacent particles in particulate reinforced metal matrix composites 被引量:2
14
作者 Qing LIU Fu-gong QI +2 位作者 Hai-min DING Xiao-liang FAN Ying YUE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第11期2315-2324,共10页
The distribution of stress and strain between adjacent particles in particulate reinforced metal matrix composites wasinvestigated using cohesive zone models. It is found that the strain of the composite is concentrat... The distribution of stress and strain between adjacent particles in particulate reinforced metal matrix composites wasinvestigated using cohesive zone models. It is found that the strain of the composite is concentrated in the matrix, and there is aregion with higher strain along the loading path, which can promote the formation of a void near the particles pole. The stress andstrain in matrix near the particles gradually decrease with the increase of the distance between particles. And it is calculated that thereis a critical distance within which the stress and strain fields of the neighboring particles can influence with each other. This criticaldistance increases with the increase of particle size. It is also found that the angle between the tensile direction and the center line ofparticles plays an important role in the stress and strain distribution. The model with the angle of 0° has the greatest influence on thedistribution of stress and strain in the matrix, while the model with the angle of 45° has the least influence on the distribution of stressand strain in the matrix. 展开更多
关键词 stress STRAIN metal matrix composite finite-element analysis FRACTURE interface
下载PDF
Development of Mg based biomaterial with improved mechanical and degradation properties using powder metallurgy 被引量:1
15
作者 Ajit Kumar Pulak M.Pandey 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第3期883-898,共16页
In the present work,biocompatible materials such as niobium(Nb),zinc(Zn)and calcium(Ca)have been blended with magnesium(Mg)to develop a novel biomaterial(BM)with improved mechanical and corrosion resistant properties.... In the present work,biocompatible materials such as niobium(Nb),zinc(Zn)and calcium(Ca)have been blended with magnesium(Mg)to develop a novel biomaterial(BM)with improved mechanical and corrosion resistant properties.Powder metallurgy(PM)technique was used to fabricate Mg based BM.The powder of all aforementioned materials were mixed homogenously in specific quantities to create a uniform composite component.In order to analyse the influence of process parameters on the mechanical properties of the fabricated part,experiments were performed considering central composite design(CCD).The effect of powder metallurgical parameters namely percentage Nb,compaction pressure,heating rate,sintering temperature and soaking time on the ultimate compressive strength(UCS)and sintered density was studied in the present study.It was found that the UCS and sintered density increased with increase in compaction pressure,heating rate and sintering temperature.The results also revealed that the increase in soaking time and percentage Nb,increased sintered density and UCS to a certain limit.Subsequent increase in these two parameters,sintered density and UCS decreased.Scanning electron microscopy(SEM)images of the fabricated samples showed reduction in porosity with the increase in heating rate.Moreover,X-ray diffraction(XRD)results revealed that no other phase or impurities were found during sintering of Mg based BMs.The optimum process parameters were obtained to develop Mg based BM for maximum UCS and sintered density.Furthermore,the Mg based BM samples fabricated at optimum process parameters were used for corrosion testing in simulated body fluid(SBF)solution at a temperature of 37±0.5℃.The Mg based BM yielded improved mechanical properties with reduced corrosion rates as compared to pure Mg. 展开更多
关键词 BIOMATERIALS powder metallurgy MAGNESIUM CORROSION metal matrix composite
下载PDF
Effect of Consolidation Conditions on the Tensile Behavior of Pure Aluminium-Carbon Nanotubes Reinforced Metal Matrix Composites
16
作者 Mohamed Mahmoud Emara 《材料科学与工程(中英文A版)》 2013年第4期232-236,共5页
关键词 金属基复合材料 碳纳米管 拉伸行为 并条 纯铝 金属复合材料 粉末冶金技术 陶瓷基体
下载PDF
The Effect of Particle Alignment on the Tensile Behaviors of Extruded Al2O3/2124 Aluminum Alloy Metal Matrix Composites
17
作者 Mohamed Mahmoud Emara 《材料科学与工程(中英文A版)》 2014年第1期34-38,共5页
关键词 金属基复合材料 拉伸行为 挤压 对准 铝合金 粒子 机械性能 微观结构
下载PDF
A Review on Particle Reinforced Mg Matrix Composites Fabricated by Powder Metallurgy
18
作者 Zhiyuan Liu Li Jin +4 位作者 Jian Zeng Fulin Wang Fenghua Wang Shuai Dong Jie Dong 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第3期391-400,共10页
This paper provides a comprehensive review of research progress in particle-reinforced Mg matrix composites prepared via powder metallurgy.The article discusses different strategies,such as micro-sized,nano-sized part... This paper provides a comprehensive review of research progress in particle-reinforced Mg matrix composites prepared via powder metallurgy.The article discusses different strategies,such as micro-sized,nano-sized particles,and multi-particle hybridization,which has been employed to enhance the performance of the composites.In addition,a range of preparation techniques that optimize the dispersion of the reinforcing particles are summarized.The paper also highlights how the different configurations between the reinforcements and matrix alloy impact the composites’performance.Finally,the article outlines the prospects of particles reinforced Mg matrix composites fabricated via powder metallurgy and recommends modification methods that could be explored to further develop these materials for various applications. 展开更多
关键词 Magnesium matrix composites Reinforcing particle powder metallurgy Mechanical properties CONFIGURATION
原文传递
Microstructure and Lattice Parameters of AIN Particle-Reinforced Magnesium Matrix Composites Fabricated by Powder Metallurgy 被引量:4
19
作者 Jie Chen Chong-Gao Bao +2 位作者 Yong Wang Jin-Ling Liu Challapalli Suryanarayana 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第11期1354-1363,共10页
Magnesium matrix composites reinforced with AlN particles were fabricated by the powder metallurgy technique. The evolution of lattice constants and solid solubility levels of Al in α-Mg and the microstructure of Mg-... Magnesium matrix composites reinforced with AlN particles were fabricated by the powder metallurgy technique. The evolution of lattice constants and solid solubility levels of Al in α-Mg and the microstructure of Mg-Al/AlN composites were investigated in the present study. The results showed that the solid solubility of Al in α-Mg reached a relatively high level by the P/M process with a long time of milling. X-ray diffraction showed that the peaks of Mg phase clearly shifted to higher angles. The lattice constants and cell volume decreased significantly compared with those of standard Mg due to a significant amount of Al incorporated into α-Mg in the form of substitutional solid solution. The degree of lattice deformation decreased at a low sintering temperature and increased at higher sintering temperatures due to the presence of AlN. Microstructural characterization of the composites revealed a necklace distribution of AlN particles in the Mg matrix. Heat treatment led to precipitation of Mg17Al12 from the supersaturated α-Mg solid solution. The pre- cipitate exhibited granular and lath-shaped morphologies in Mg matrix and ftocculent precipitation around AlN particles. 展开更多
关键词 metal matrix composite AIN particle MICROSTRUCTURE Lattice parameter powder metallurgy Solid solubility
原文传递
Hot deformation behavior and microstructure evolution of GH3536-TiB_(2) composites fabricated by powder metallurgy
20
作者 ZHOU ShiPeng WANG Shuai +7 位作者 HUANG LuJun ZHANG Rui CHEN Xin MENG FanChao CHEN Run SUN FengBo WANG CunYu GENG Lin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第7期2107-2124,共18页
The hot deformation behavior and microstructure evolution of GH3536-TiB2composites fabricated by powder metallurgy(PM)were examined in the temperature range of 950–1150℃ and strain rate range of 0.001–1 s^(-1). The... The hot deformation behavior and microstructure evolution of GH3536-TiB2composites fabricated by powder metallurgy(PM)were examined in the temperature range of 950–1150℃ and strain rate range of 0.001–1 s^(-1). The hot compression stress-strain curves and the constitutive equation were obtained. In addition, the hot processing map was drawn, which indicated that the appropriate hot working window was 950–1050℃/0.001–0.1 s^(-1)and 1050–1100℃/0.001–0.01 s^(-1). The microstructure analysis showed that the splitting and spheroidization of M3B2led to a decrease in size and volume fraction at 950–1100℃. At 1150℃,the eutectic microstructure of M_(3)B_(2)+ γ was formed due to the dissolution of M_(3)B_(2), which caused macroscopic cracking of the deformed sample. Additionally, the deformation temperature and the strain rate had little effect on the size and volume fraction of M_(3)B_(2). Besides, discontinuous dynamic recrystallization(DDRX) and continuous dynamic recrystallization(CDRX) were found in the deformed microstructure, while the former was dominant. Within the test range of this work, the dynamic recrystallization(DRX) fraction of the deformed composites was high due to the bulging nucleation of numerous interfaces. The DRX grain size increased with increasing deformation temperature or decreasing strain rate. Texture analysis showed that the deformation texture of <101>//compression direction RD existed in the matrix when the deformation temperature was below 1100℃, and the texture type became <001>//RD at 1100℃. Additionally, it was also found that the <001>//RD texture was formed in M3B2under the strain rates of 0.1 and 0.01 s^(-1). 展开更多
关键词 GH3536 alloy matrix composites powder metallurgy hot deformation behavior microstructure evolution
原文传递
上一页 1 2 23 下一页 到第
使用帮助 返回顶部