Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan...Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.展开更多
Statement of problem: Many processes have been applied to improve the fracture resistance of acrylic resin dentures by reinforcing them. The maximum goal of any denture repair is to restore the main strength of the de...Statement of problem: Many processes have been applied to improve the fracture resistance of acrylic resin dentures by reinforcing them. The maximum goal of any denture repair is to restore the main strength of the denture and to avoid further fracture. Purpose: This study investigated the ability of self-curing acrylic resin to be strength and deflection of repaired acrylic resin joints reinforced with various reinforcement materials to resist fracture. Material and methods: Transverse strength of polymethyl methacrylate acrylic resin reinforced with glass fiber mesh, metal mesh, and metal wire was evaluated with a 3-point load test on 40 intact specimens (n = 10 for control group) (n = 10 per each reinforcement material group). Fractured joint margins were rounded, a 4-mm gap was placed between them, and then they were repaired with autopolymerizing acrylic resin and retested. Results: Transverse strength for the polymethyl methacrylate acrylic resin samples has showed fracture at the side of sample rather than in the middle area of reinforcement materials and some other samples showed bending statue rather than fracture. Conclusion: Reinforcement with glass fiber mesh, metal mesh, and metal wire produced transverse strength in the side area of resin denture base material rather than in the middle of reinforcement area with bending samples rather than fracture response.展开更多
Transparent electromagnetic(EM)shielding glass with a metal mesh has significant potential for application in different fields of EM radiation and anti-EM interference light-transmitting observation windows.In particu...Transparent electromagnetic(EM)shielding glass with a metal mesh has significant potential for application in different fields of EM radiation and anti-EM interference light-transmitting observation windows.In particular,a transparent EM-shielding glass with a large-aspect-ratio metal mesh can effectively alleviate the contradictory problems of shielding effectiveness and light-transmission performance constraints.However,the fabrication of high-aspect-ratio metal meshes on glass substrates has problems such as high cost,complex processes,low efficiency,small area,and easy damage issues,which limit their application in the field of high-performance,transparent EM-shielding glass.Therefore,this paper proposes a composite additive manufacturing process based on electric-field-driven microjet 3D printing and electroplating.By fabricating metal meshes with an Ag-Cu core-shell structure on a glass substrate,EM-shielding glass with high shielding efficiency and light transmission can be manufactured without increasing the aspect ratio of the metal meshes.The prepared Ag-Cu composite metal mesh has excellent optoelectronic properties(period 250𝜇m,line width 10𝜇m,90.1%transmission at 550 nm visible light,square resistance 0.21Ω/sq),efficient electrothermal effect(3 V DC voltage can reach 189°C steady-state temperature),stable EM-shielding effectiveness(average shielding effectiveness 23 dB at X-band),and acceptable mechanical and environmental stability(less than 3%change in square resistance after 150-times adhesion test and less than 6%and 0.6%change in resistance after 72 h in acid and alkali environments,respectively).This method provides a new solution for the mass production of high-performance large-area transparent electric heating/EM-shielding glass.展开更多
In this paper, we present an infrared transparent frequency selective surface(ITFSS) based on iterative metallic meshes, which possesses the properties of high transmittance in infrared band and band-pass effect in ...In this paper, we present an infrared transparent frequency selective surface(ITFSS) based on iterative metallic meshes, which possesses the properties of high transmittance in infrared band and band-pass effect in millimeter wave band. Cross-slot units are designed on the iterative metallic meshes, which is composed of two same square metallic meshes with a misplaced overlap. In the infrared band of 3–5 μm, the ITFSS has an average transmittance of 80% with a Mg F2 substrate. In the millimeter wave band, a transmittance of-0.74 d B at the resonance frequency of 39.4 GHz is obtained. Moreover, theoretical simulations of the ITFSS diffractive characteristics and transmittance response are also investigated in detail. This ITFSS may be an efficient way to achieve the metamaterial millimeter wave/infrared functional film.展开更多
The relation between the structure of the silver network electrodes and the properties of Cu(In,Ga)Se_(2)(CIGS)solar cells is systemically investigated.The Ag network electrode is deposited onto an Al:ZnO(AZO)thin fil...The relation between the structure of the silver network electrodes and the properties of Cu(In,Ga)Se_(2)(CIGS)solar cells is systemically investigated.The Ag network electrode is deposited onto an Al:ZnO(AZO)thin film,employing a self-forming cracked template.Precise control over the cracked template's structure is achieved through careful adjustment of temperature and humidity.The Ag network electrodes with different coverage areas and network densities are systemically applied to the CIGS solar cells.It is revealed that predominant fill factor(FF)is influenced by the figure of merit of transparent conducting electrodes,rather than sheet resistance,particularly when the coverage area falls within the range of 1.3–5%.Furthermore,a higher network density corresponds to an enhanced FF when the coverage areas of the Ag networks are similar.When utilizing a thinner AZO film,CIGS solar cells with a surface area of 1.0609 cm^(2)exhibit a notable performance improvement,with efficiency increasing from 10.48%to 11.63%.This enhancement is primarily attributed to the increase in FF from 45%to 65%.These findings underscore the considerable potential for reducing the thickness of the transparent conductive oxide(TCO)in CIGS modules with implications for practical applications in photovoltaic technology.展开更多
以氧化铟锡(indium tin oxide,ITO)为代表的透明导电氧化物(transparent conducting oxide,TCO)在当前光电器件中的重要性日益增长.通过在TCO中引入金属网格构成复合电极,可以在保持良好透明性的前提下有效提升电学性能,同时降低对铟的...以氧化铟锡(indium tin oxide,ITO)为代表的透明导电氧化物(transparent conducting oxide,TCO)在当前光电器件中的重要性日益增长.通过在TCO中引入金属网格构成复合电极,可以在保持良好透明性的前提下有效提升电学性能,同时降低对铟的需求量,并为可穿戴设备所需的柔性电极提供可能方案.对此类电极的电学性能分析,如复合电极方阻随金属网格结构参数的变化,可为电极设计与制备提供基本的出发点,但相关理论尚十分缺乏.本文针对典型的方孔方格型金属网格-TCO复合电极,分别展开基于瑞利模型和基于有限元仿真的电学性能分析.结果表明,孔型近似导致的金属通道显著畸变是复合电极的电学计算中瑞利模型在中高开口率下失效的主要原因.据此,我们采用格型修正,通过提升瑞利模型中的原胞外边界对称性来改善金属通道的畸变.与电极仿真的对比表明,修正后瑞利模型的适用范围明显扩大,其结果可与实验数据很好地拟合,为此类复合透明电极的电学数据分析与结构设计提供了简洁高效的理论工具.展开更多
Although aqueous zinc ion hybrid capacitors have advantageous integration of batteries and supercapacitors,they still suffer from the inherent problems of dendrite growth and interfacial side reactions on Zn anodes.He...Although aqueous zinc ion hybrid capacitors have advantageous integration of batteries and supercapacitors,they still suffer from the inherent problems of dendrite growth and interfacial side reactions on Zn anodes.Herein,a universal fast zinc-ion diffusion layer on a three-dimensional(3 D)mesh structure model is demonstrated to effectively improve Zn plating/stripping reversibility.The fast ion diffusion alloy layer accelerates the Zn^(2+)migration in an orderly manner to homogenize Zn^(2+)flux and overcomes the defects of the commercial mesh substrate,effectively avoiding dendrite growth and side reactions.Consequently,the proof-of-concept silver-zinc alloy modified stainless steel mesh delivers superb reversibility with the high coulombic efficiency over 99.4%at 4 mA cm^(-2)after 1600 cycles and excellent reliability of over 830 h at 1 mA cm^(-2),Its feasibility is also evidenced in commercial zinc ion hybrid capacitors with activated carbon as the cathode.This work enriches the fundamental comprehension of fast zinc-ion diffusion layer combined with a 3 D substrate on the Zn deposition and opens a universal approach to design advanced host for Zn electrodes in zinc ion hybrid capacitors.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.523712475,2072415 and 62101352)Shenzhen Science and Technology Program(RCBS20210706092343016).
文摘Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.
文摘Statement of problem: Many processes have been applied to improve the fracture resistance of acrylic resin dentures by reinforcing them. The maximum goal of any denture repair is to restore the main strength of the denture and to avoid further fracture. Purpose: This study investigated the ability of self-curing acrylic resin to be strength and deflection of repaired acrylic resin joints reinforced with various reinforcement materials to resist fracture. Material and methods: Transverse strength of polymethyl methacrylate acrylic resin reinforced with glass fiber mesh, metal mesh, and metal wire was evaluated with a 3-point load test on 40 intact specimens (n = 10 for control group) (n = 10 per each reinforcement material group). Fractured joint margins were rounded, a 4-mm gap was placed between them, and then they were repaired with autopolymerizing acrylic resin and retested. Results: Transverse strength for the polymethyl methacrylate acrylic resin samples has showed fracture at the side of sample rather than in the middle area of reinforcement materials and some other samples showed bending statue rather than fracture. Conclusion: Reinforcement with glass fiber mesh, metal mesh, and metal wire produced transverse strength in the side area of resin denture base material rather than in the middle of reinforcement area with bending samples rather than fracture response.
基金supported by National Natural Science Foundation of China(Grant No.52175331)Shandong Provincial National Natural Science Foundation of China(Grant Nos.ZR2020ZD04,ZR2022ME014,ZR2022QE077)Support Plan for Outstanding Youth Innovation Team in Universities of Shandong Province of China(Grant No.2020KJB003).
文摘Transparent electromagnetic(EM)shielding glass with a metal mesh has significant potential for application in different fields of EM radiation and anti-EM interference light-transmitting observation windows.In particular,a transparent EM-shielding glass with a large-aspect-ratio metal mesh can effectively alleviate the contradictory problems of shielding effectiveness and light-transmission performance constraints.However,the fabrication of high-aspect-ratio metal meshes on glass substrates has problems such as high cost,complex processes,low efficiency,small area,and easy damage issues,which limit their application in the field of high-performance,transparent EM-shielding glass.Therefore,this paper proposes a composite additive manufacturing process based on electric-field-driven microjet 3D printing and electroplating.By fabricating metal meshes with an Ag-Cu core-shell structure on a glass substrate,EM-shielding glass with high shielding efficiency and light transmission can be manufactured without increasing the aspect ratio of the metal meshes.The prepared Ag-Cu composite metal mesh has excellent optoelectronic properties(period 250𝜇m,line width 10𝜇m,90.1%transmission at 550 nm visible light,square resistance 0.21Ω/sq),efficient electrothermal effect(3 V DC voltage can reach 189°C steady-state temperature),stable EM-shielding effectiveness(average shielding effectiveness 23 dB at X-band),and acceptable mechanical and environmental stability(less than 3%change in square resistance after 150-times adhesion test and less than 6%and 0.6%change in resistance after 72 h in acid and alkali environments,respectively).This method provides a new solution for the mass production of high-performance large-area transparent electric heating/EM-shielding glass.
基金supported by the National Natural Science Foundation of China(Grant No.61401424)
文摘In this paper, we present an infrared transparent frequency selective surface(ITFSS) based on iterative metallic meshes, which possesses the properties of high transmittance in infrared band and band-pass effect in millimeter wave band. Cross-slot units are designed on the iterative metallic meshes, which is composed of two same square metallic meshes with a misplaced overlap. In the infrared band of 3–5 μm, the ITFSS has an average transmittance of 80% with a Mg F2 substrate. In the millimeter wave band, a transmittance of-0.74 d B at the resonance frequency of 39.4 GHz is obtained. Moreover, theoretical simulations of the ITFSS diffractive characteristics and transmittance response are also investigated in detail. This ITFSS may be an efficient way to achieve the metamaterial millimeter wave/infrared functional film.
基金the National Research Foundation of Korea(NRF)The specific grants that facilitated this study include No.2021R1A5A8033165,RS-2023-00249229,2022M3J1A1085371,and 2023R1A2C1007386+1 种基金supported by the Human Resource Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),under grant No.20214000000200funded by the Ministry of Science and ICT(MSIT),the Ministry of Education,and the Ministry of Trade,Industry&Energy of the Republic of Korea.
文摘The relation between the structure of the silver network electrodes and the properties of Cu(In,Ga)Se_(2)(CIGS)solar cells is systemically investigated.The Ag network electrode is deposited onto an Al:ZnO(AZO)thin film,employing a self-forming cracked template.Precise control over the cracked template's structure is achieved through careful adjustment of temperature and humidity.The Ag network electrodes with different coverage areas and network densities are systemically applied to the CIGS solar cells.It is revealed that predominant fill factor(FF)is influenced by the figure of merit of transparent conducting electrodes,rather than sheet resistance,particularly when the coverage area falls within the range of 1.3–5%.Furthermore,a higher network density corresponds to an enhanced FF when the coverage areas of the Ag networks are similar.When utilizing a thinner AZO film,CIGS solar cells with a surface area of 1.0609 cm^(2)exhibit a notable performance improvement,with efficiency increasing from 10.48%to 11.63%.This enhancement is primarily attributed to the increase in FF from 45%to 65%.These findings underscore the considerable potential for reducing the thickness of the transparent conductive oxide(TCO)in CIGS modules with implications for practical applications in photovoltaic technology.
文摘以氧化铟锡(indium tin oxide,ITO)为代表的透明导电氧化物(transparent conducting oxide,TCO)在当前光电器件中的重要性日益增长.通过在TCO中引入金属网格构成复合电极,可以在保持良好透明性的前提下有效提升电学性能,同时降低对铟的需求量,并为可穿戴设备所需的柔性电极提供可能方案.对此类电极的电学性能分析,如复合电极方阻随金属网格结构参数的变化,可为电极设计与制备提供基本的出发点,但相关理论尚十分缺乏.本文针对典型的方孔方格型金属网格-TCO复合电极,分别展开基于瑞利模型和基于有限元仿真的电学性能分析.结果表明,孔型近似导致的金属通道显著畸变是复合电极的电学计算中瑞利模型在中高开口率下失效的主要原因.据此,我们采用格型修正,通过提升瑞利模型中的原胞外边界对称性来改善金属通道的畸变.与电极仿真的对比表明,修正后瑞利模型的适用范围明显扩大,其结果可与实验数据很好地拟合,为此类复合透明电极的电学数据分析与结构设计提供了简洁高效的理论工具.
基金financially supported by the National Natural Science Foundation of China(51901249,U1904216)。
文摘Although aqueous zinc ion hybrid capacitors have advantageous integration of batteries and supercapacitors,they still suffer from the inherent problems of dendrite growth and interfacial side reactions on Zn anodes.Herein,a universal fast zinc-ion diffusion layer on a three-dimensional(3 D)mesh structure model is demonstrated to effectively improve Zn plating/stripping reversibility.The fast ion diffusion alloy layer accelerates the Zn^(2+)migration in an orderly manner to homogenize Zn^(2+)flux and overcomes the defects of the commercial mesh substrate,effectively avoiding dendrite growth and side reactions.Consequently,the proof-of-concept silver-zinc alloy modified stainless steel mesh delivers superb reversibility with the high coulombic efficiency over 99.4%at 4 mA cm^(-2)after 1600 cycles and excellent reliability of over 830 h at 1 mA cm^(-2),Its feasibility is also evidenced in commercial zinc ion hybrid capacitors with activated carbon as the cathode.This work enriches the fundamental comprehension of fast zinc-ion diffusion layer combined with a 3 D substrate on the Zn deposition and opens a universal approach to design advanced host for Zn electrodes in zinc ion hybrid capacitors.